什么是Batch Normalization?

  • 深度学习的一个本质问题

  • Internal Covariate Shift

  • 什么是BN

深度学习的一个本质问题

深度神经网络一直以来就有一个特点:随着网络加深,模型会越来越难以训练。所以深度学习有一个非常本质性的问题:为什么随着网络加深,训练会越来越困难?为了解决这个问题,学界业界也一直在尝试各种方法。

sigmoid作为激活函数一个最大的问题会引起梯度消失现象,这使得神经网络难以更新权重。使用ReLu激活函数可以有效的缓解这一问题。

在这里插入图片描述

对神经网络使用正则化方法也能对这个问题有所帮助,使用dropout来对神经网络进行简化,可以有效缓解神经网络的过拟合问题,对于深度网络的训练也有一定的帮助。ResNet使用残差块和skip connection来解决这个问题,使得深度加深时网络仍有较好的表现力。

在这里插入图片描述

BN本质上也是一种解决深度神经网络难以训练问题的方法。

Internal Covariate Shift

机器学习的一个重要假设就是IID(Independent Identically Distributed)假设,即独立同分布假设。所谓独立同分布,就是指训练数据和测试数据是近似于同分布的,如若不然

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值