对于一些没有实验条件以及没有充足实验经费的同学来说,泛癌研究其实是一个非常不错的选择。但是关于泛癌研究怎么做,尤其是单细胞的泛癌研究该怎么做,许多同学都没有什么头绪。
自从张泽民老师两篇顶级的泛癌研究的发表以来,基于公共单细胞数据的泛癌研究可以说是越来越多。但大多数都只是合并数据后的差异分析,并没有讲出一个生动的故事来。尤其是在现在这个时间节点,单细胞数据泛滥,空间转录组数据出露头角,拟时序,细胞互作(crosstalk)以及单细胞网络等等复杂算法的提出,越来越挑战我们这帮科研狗编故事的能力。而今天带来的这篇泛癌文章,非常丝滑地把这些东西串到了一起,并描绘了一个相当有趣的故事。
回到正文部分,文章首先介绍了数据的构成(正常、癌旁和肿瘤组织)
和一些零碎的结果,例如通过一类巨噬细胞的含量随着疾病恶性程度梯度下降(正常—>癌旁—>肿瘤—>转移),推断此类巨噬细胞能够作为疾病进程的标志物。(如下图)
关于文章这个部分,是我们应该去学习的。在在泛癌研究中,我们常常忽视这种样本疾病的恶性程度信息(因为总是pool到一起去做),但这样会失去了很多发现新东西的机会。倒过来讲,如果我们有了什么新发现的细胞类型,我们同样可以通过这种方式来证明这些新细胞的重要性。
好的我们回到主线,该研究的核心在于泛癌中的成纤维细胞。通过差异分析能够得到与成纤维细胞活性相关的一些基因在癌症样本中上调了,推断成纤维细胞在癌症中活化。
而活化后的成纤维细胞有什么样变化呢?
如果是几年前,仅用表达数据能够做的事情就是用差异基因做个功能富集,但是在单细胞领域,我们还能去通过细胞间crosstalk的差异来描述细胞的功能变化。在正常,癌旁到肿瘤组织中,成纤维细胞与其他TME的crosstalk在逐步增强,预示着成纤维在肿瘤进程中的重要调控作用。(如下图)
该研究中成纤维细胞被分为8个类型,并通过SCENIC计算的regulon富集程度证明了注释的准确性。(如下图)
关于这个成纤维细胞注释的事情,其实目前来讲是没有什么明确的金标准的。但是这种细胞亚型注释方法是否值得借鉴呢?从经验上来说,很难!简单的说,该文章的SCENIC结果有点好的离谱了,除非成纤维细胞本身确实存在如此巨大的差异。
我们接着回归主题。
由于活化是种过程,而几种成纤维亚型的比例数量在不同条件中也有明显差异。种种结果驱动着我们探究成纤维细胞可能的分化过程,将处于不同分化位置的成纤维细胞标志为不同的state (1-3)。并针对每种成纤维_state计算了EMT(内皮间充质转化) score以标注恶性程度。
由于该部分说书是以crosstalk为起点,所以后续文章详细的展示了成纤维细胞究竟是基于哪些受配体与其他细胞进行交互的。并通过交互强烈程度以及一些特殊的基因说明了成纤维_state3的危害程度(如下图)
而最后,通过外部生存数据验证成纤维_state3危害(如下图)
简而言之,这一部分得到的结论是成纤维会随着肿瘤进程不断的活化,活化的表现为与其他细胞的交互增强,并且这种活化后的成纤维细胞与患者更差的生存有关系。
但是到这里,有些同行或许会疑惑在详尽展示crosstalk结果的时候为什么要用state而非细胞类型。因为大多数人是不会太在意monocle得到的state信息的。关于这个问题,我们实验室讨论后的结论是,如果基于八个cluster往下做,结果很有可能不会特别的好,因为细胞分的越细致,细胞之间的差异就越小。这个时候Cibersort是否还能够比较精准的预测出各类细胞的含量呢?外部印证是否还能够显著呢?所以利用数量更少分类更笼统的state是更加合适更加稳妥的。
再往下,文章探讨了成纤维细胞的可塑性。简单来说,因为成纤维细胞的一个亚类包含了两类细胞的marker gene(成纤维,免疫)。所以认为该类成纤维细胞是巨噬细胞向着成纤维细胞转化的中间态。通过拟时序,荧光双阳细胞的发现以及单细胞数据得到的marker交叠,初步验证了该假设(如下图)。
在文章最后一部分,文章讨论了成纤维细胞与巨噬细胞的相互作用(如下图)
并利用空间转录组数据计算了两类细胞的显著共定位,提示两类细胞存在互作的空间条件。
从单细胞数据得到的细胞crosstalk是完全可以用空转数据的细胞共定位来验证的哦~(虽然不能称之为金标准)今天也读到了一篇cell-cell interaction的benchmark 文章,所利用的验证数据就是配套的单细胞和空间转录组数据。