对于一些没有实验条件以及没有充足实验经费的同学来说,泛癌研究其实是一个非常不错的选择。但是关于泛癌研究怎么做,尤其是单细胞的泛癌研究该怎么做,许多同学都没有什么头绪。
自从张泽民老师两篇顶级的泛癌研究的发表以来,基于公共单细胞数据的泛癌研究可以说是越来越多。但大多数都只是合并数据后的差异分析,并没有讲出一个生动的故事来。尤其是在现在这个时间节点,单细胞数据泛滥,空间转录组数据出露头角,拟时序,细胞互作(crosstalk)以及单细胞网络等等复杂算法的提出,越来越挑战我们这帮科研狗编故事的能力。而今天带来的这篇泛癌文章,非常丝滑地把这些东西串到了一起,并描绘了一个相当有趣的故事。
回到正文部分,文章首先介绍了数据的构成(正常、癌旁和肿瘤组织)
和一些零碎的结果,例如通过一类巨噬细胞的含量随着疾病恶性程度梯度下降(正常—>癌旁—>肿瘤—>转移),推断此类巨噬细胞能够作为疾病进程的标志物。(如下图)
关于文章这个部分,是我们应该去学习的。在在泛癌研究中,我们常常忽视这种样本疾病的恶性程度信息