使用 Python 从故障轴承振动信号序列判断故障出现时间

该项目通过Python分析故障轴承的振动信号,利用μ+3σ方法确定故障出现时间。在Bearing1_5轴承的振动信号中,发现30分钟后振幅增大,标志着故障开始。具体步骤包括提取信号、计算RMS、设定阈值,最终发现故障始于36分钟。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

项目介绍

在本项目中,我们已有五个故障轴承的从开始到失效的振动信号,它们被放在五个文件夹中,如下图所示:
在这里插入图片描述每个文件夹中都有很多个 csv 文件,如在 Bearing1_5 文件夹中:
在这里插入图片描述这里有 52 个 csv 文件,则表明这个轴承从开始测试到失效总共用了 52 分钟。

每个 csv 文件中都有 32768 行数据,这是一分钟内传感器记录的振动信号的幅值,即一分钟内传感器记录了 32768 次振动信号。

如果将 52 分钟内记录的所有信号都拿来分析是非常麻烦的,所以这里我们在每分钟内只取等距的 1280 个时间点的信号用来分析,则总共有 52 ×

评论 37
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

cofisher

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值