项目介绍
在对抗学习中,我们常常需要将某一层的梯度乘上-1再进行梯度下降的操作(即梯度上升),就像【深度域适配】一、DANN与梯度反转层(GRL)详解一文中所介绍的那样。

代码实现
@tf.custom_gradient
def grad_reverse(x):
y = tf.identity(x
该项目介绍了如何在TensorFlow2.0中实现对抗学习中的梯度反转层(GRL)。通过示例代码展示了GRL层如何影响神经网络中权重的梯度,说明了GRL层在不同位置对梯度的影响,并提供了如何仅对特定层的梯度取反的方法。
在对抗学习中,我们常常需要将某一层的梯度乘上-1再进行梯度下降的操作(即梯度上升),就像【深度域适配】一、DANN与梯度反转层(GRL)详解一文中所介绍的那样。

@tf.custom_gradient
def grad_reverse(x):
y = tf.identity(x
4310

被折叠的 条评论
为什么被折叠?