深度学习多分类问题中,最后一层通常会用Softmax输出每个类别的概率,然后计算交叉熵损失进行反向传播。
Softmax公式为:
交叉熵损失函数为:
假设第k个神经元为正确标签,则 Y = ( y 1 , y 2 , . . . , y n ) Y=(y_1, y_2,...,y_n) Y=(y1,</
Softmax 反向传播公式推导
最新推荐文章于 2024-06-28 13:30:09 发布
深度学习多分类问题中,最后一层通常会用Softmax输出每个类别的概率,然后计算交叉熵损失进行反向传播。
Softmax公式为:
交叉熵损失函数为:
假设第k个神经元为正确标签,则 Y = ( y 1 , y 2 , . . . , y n ) Y=(y_1, y_2,...,y_n) Y=(y1,</