Softmax 反向传播公式推导

深度学习多分类问题中,最后一层通常会用Softmax输出每个类别的概率,然后计算交叉熵损失进行反向传播。
Softmax公式为:
在这里插入图片描述
交叉熵损失函数为:
在这里插入图片描述
假设第k个神经元为正确标签,则 Y = ( y 1 , y 2 , . . . , y n ) Y=(y_1, y_2,...,y_n) Y=(y1,</

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值