数值分析(第五版) 第一章知识点总结

仅供大致参考,有许多定义存在不严谨的地方;不同学校的考察重点自然是不同的

第一章 绪论
舍入误差

由于计算机字长是有限的,因此在存储数据时便可能不可避免地丢失部分信息,这便是舍入误差。


截断误差

由于计算机必须在有限的时间内得到运行结果,因此无穷的运算过程必须截断为有限的运算过程,由此产生截断误差。


绝对误差

x ∗ x^{*} x为真值 x x x的近似值,那么绝对误差就是这两者的绝对差距,即: e ∗ = x ∗ − x e^{*} = x^{*} - x e=xx


相对误差

相对误差的相对指的是其考虑了真值 x x x。当然,由于真值 x x x实际是未知的,因此有: e r ∗ = e ∗ x ≈ e ∗ x ∗ e_{r}^{*}=\frac{e^{*}}{x} \approx \frac{e^{*}}{x^{*}} er=xexe


绝对误差限

∣ e ∗ ∣ |e^{*}| e的上限


相对误差限

∣ e r ∗ ∣ |e_{r}^{*}| er的上限


误差限的计算

记两个近似数 x 1 ∗ x_{1}^{*} x1 x 2 ∗ x_{2}^{*} x2,其误差限分别为 ε ( x 1 ∗ ) \varepsilon(x_{1}^{*}) ε(x1) ε ( x 2 ∗ ) \varepsilon(x_{2}^{*}) ε(x2)。那么对其进行加减乘除运算分别满足如下规律: ε ( x 1 ∗ ± x 2 ∗ ) = ε ( x 1 ∗ ) + ε ( x 2 ∗ ) \varepsilon\left(x_{1}^{*} \pm x_{2}^{*}\right)=\varepsilon\left(x_{1}^{*}\right)+\varepsilon\left(x_{2}^{*}\right) ε(x1±x2)=ε(x1)+ε(x2) ε ( x 1 ∗ x 2 ∗ ) ≈ ∣ x 1 ∗ ∣ ε ( x 2 ∗ ) + ∣ x 2 ∗ ∣ ε ( x 1 ∗ ) \varepsilon\left(x_{1}^{*} x_{2}^{*}\right) \approx\left|x_{1}^{*}\right| \varepsilon\left(x_{2}^{*}\right)+\left|x_{2}^{*}\right| \varepsilon\left(x_{1}^{*}\right) ε(x1x2)x1ε(x2)+x2ε(x1) ε ( x 1 ∗ / x 2 ∗ ) ≈ ∣ x 2 ∗ ∣ ε ( x 2 ∗ ) + ∣ x 2 ∗ ∣ ( x 1 ∗ ) ∣ x 2 ∗ ∣ 2 \varepsilon\left(x_{1}^{*} / x_{2}^{*}\right) \approx \frac{\left|x_{2}^{*}\right| \varepsilon\left(x_{2}^{*}\right)+\left|x_{2}^{*}\right|\left(x_{1}^{*}\right)}{\left|x_{2}^{*}\right|^{2}} ε(x1/x2)x22x2ε(x2)+x2(x1)


有效数字

如果 x ∗ x^* x的绝对误差限是它的某一数位的半个单位,并且从 x ∗ x^* x左起第一个非零数字到该数位共有 n n n位,则称这 n n n个数字为 x x x的有效数字,也称用 x ∗ x^* x近似 x x x时具有 n n n位有效数字。

一般地,凡是由精确值经过四舍五入得到的近似值,其绝对误差限等于该近似值末位的半个单位。


秦九韶算法

对于多项式 f ( x ) = a n x n + a n − 1 x n − 1 + ⋯ + a 1 x + a 0 f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0} f(x)=anxn+an1xn1++a1x+a0,逐次去提取个 x x x出来: f ( x ) = ( ( a n x n − 2 + a n − 1 x n − 3 + ⋯ a 3 x + a 2 ) x + a 1 ) x + a 0 ⋮ = ( … ( ( a n x + a n − 1 ) x + a n − 2 ) x + ⋯ + a 1 ) x + a 0 \begin{gathered} f(x)=\left(\left(a_{n} x^{n-2}+a_{n-1} x^{n-3}+\cdots a_{3} x+a_{2}\right) x+a_{1}\right) x+a_{0} \\ \vdots \\ =\left(\ldots\left(\left(a_{n} x+a_{n-1}\right) x+a_{n-2}\right) x+\cdots+a_{1}\right) x+a_{0} \end{gathered} f(x)=((anxn2+an1xn3+a3x+a2)x+a1)x+a0=(((anx+an1)x+an2)x++a1)x+a0 然后从最里面的括号往外算即可,可以显著减少乘法运算量。


例1

设3.1415是 π \pi π的近似值,其有效数字位数是多少
注意最后一位5不是精确的(四舍五入应为6),而从3到1一共有4个数字,因此位数为4


例2

x=3.100是某个精确值四舍五入得到的近似值,其有效数字位数是多少
由于是四舍五入,因此最后一位也是精确的,从3到最后一个0有4个数字,因此位数为4


例3

x > 0 x>0 x>0 x x x的相对误差为 δ \delta δ,求 ln ⁡ x \ln x lnx的误差。
这里的误差应指绝对误差,那么就是求 ln ⁡ x − ln ⁡ x ∗ = ln ⁡ x x ∗ \ln x-\ln x^{*} = \ln \frac{x}{x^{*}} lnxlnx=lnxx
现在考虑怎么把这个式子继续给算下去。由于我们相对误差是知道的,也就是有: x − x ∗ x ∗ = δ \frac{x-x^{*}}{x^{*}} = \delta xxx=δ 那么接下来把左边这个式子凑出来就行了,有: ln ⁡ x − ln ⁡ x ∗ = ln ⁡ x x ∗ = ln ⁡ x − x ∗ + x ∗ x ∗ = ln ⁡ ( δ + 1 ) \ln x-\ln x^{*}=\ln \frac{x}{x^{*}}=\ln \frac{x-x^{*}+x^{*}}{x^{*}}=\ln (\delta+1) lnxlnx=lnxx=lnxxx+x=ln(δ+1) 取极限,有 ln ⁡ ( δ + 1 ) ≈ δ \ln (\delta+1) \approx \delta ln(δ+1)δ,即 ln ⁡ x \ln x lnx的误差的误差仍为 δ \delta δ


例4

求下列各近似值的误差限:  (i)  x 1 ∗ + x 2 ∗ + x 4 ∗ ;  (ii)  x 1 ∗ ⋅ x 2 ∗ ⋅ x 3 ∗ ;  (iii)  x 2 ∗ / x 4 ∗ \text { (i) } x_{1}^{*}+x_{2}^{*}+x_{4}^{*} ; \text { (ii) } x_{1}^{*} \cdot x_{2}^{*} \cdot x_{3}^{*} ; \text { (iii) } x_{2}^{*} / x_{4}^{*}  (i) x1+x2+x4; (ii) x1x2x3; (iii) x2/x4 其中 x 1 ∗ = 1.1021 , x 2 ∗ = 0.031 , x 3 ∗ = 385.6 , x 4 ∗ = 56.430 x_{1}^{*}=1.1021, x_{2}^{*}=0.031, x_{3}^{*}=385.6, x_{4}^{*}=56.430 x1=1.1021,x2=0.031,x3=385.6,x4=56.430
考虑代入上文提到的误差限计算公式,有:
e ∗ ( x 1 ∗ + x 2 ∗ + x 4 ∗ ) ⩽ e ( x 1 ∗ ) + e ( x 2 ∗ ) + e ( x 4 ∗ ) = 1 2 × 1 0 − 4 + 1 2 × 1 0 − 3 + 1 2 × 1 0 − 3 ⩽ 1.052 × 1 0 − 3 \begin{aligned} e^{*}\left(x_{1}^{*}+x_{2}^{*}+x_{4}^{*}\right) & \leqslant e\left(x_{1}^{*}\right)+e\left(x_{2}^{*}\right)+e\left(x_{4}^{*}\right) \\ &=\frac{1}{2} \times 10^{-4}+\frac{1}{2} \times 10^{-3}+\frac{1}{2} \times 10^{-3} \\ & \leqslant 1.052 \times 10^{-3} \end{aligned} e(x1+x2+x4)e(x1)+e(x2)+e(x4)=21×104+21×103+21×1031.052×103 e ∗ ( x 1 ∗ ⋅ x 2 ∗ ⋅ x 3 ∗ ) ≈ x 2 ∗ ⋅ x 3 ∗ ( x 1 − x 1 ∗ ) + x 1 ∗ ⋅ x 3 ∗ ⋅ ( x 2 − x 2 ∗ ) + x 1 ∗ ⋅ x 2 ∗ ( x 3 − x 3 ∗ ) ≈ 0.215 \begin{array}{l} \left.e^{*}(x_{1}^{*} \cdot x_{2}^{*} \cdot x_{3}^{*}\right) \\ \approx x_{2}^{*} \cdot x_{3}^{*}\left(x_{1}-x_{1}^{*}\right)+x_{1}^{*} \cdot x_{3}^{*} \cdot\left(x_{2}-x_{2}^{*}\right)+x_{1}^{*} \cdot x_{2}^{*}\left(x_{3}-x_{3}^{*}\right) \\ \approx 0.215 \end{array} e(x1x2x3)x2x3(x1x1)+x1x3(x2x2)+x1x2(x3x3)0.215 e ∗ ( x 2 ∗ / x 4 ∗ ) ⩽ ∣ 1 x 4 ∗ ( x 2 − x 2 ∗ ) − x 2 ∗ ( x 4 ∗ ) 2 ( x 4 − x 4 ∗ ) ∣ = ∣ x 2 ∗ x 4 ∗ e r ∗ ( x 2 ) − x 2 ∗ x 4 ∗ e r ∗ ( x 4 ) ∣ ⩽ ∣ x 2 ∗ x 4 ∗ ∣ [ ∣ e 1 ∗ ( x 2 ) ∣ + e r ∗ ( x 4 ) ∣ ] = 0.031 56.430 [ 1 2 × 1 0 − 3 0.031 + 1 2 × 1 0 − 3 56.430 ] ⩽ 1 0 − 5 \begin{aligned} e^{*}\left(x_{2}^{*} / x_{4}^{*}\right) & \leqslant\left|\frac{1}{x_{4}^{*}}\left(x_{2}-x_{2}^{*}\right)-\frac{x_{2}^{*}}{\left(x_{4}^{*}\right)^{2}}\left(x_{4}-x_{4}^{*}\right)\right| \\ &=\left|\frac{x_{2}^{*}}{x_{4}^{*}} e_{r}^{*}\left(x_{2}\right)-\frac{x_{2}^{*}}{x_{4}^{*}} e_{r}^{*}\left(x_{4}\right)\right| \\ & \leqslant \mid \frac{x_{2}^{*}}{x_{4}^{*}} \mid\left[\left|e_{1}^{*}\left(x_{2}\right)\right|+e_{r}^{*}\left(x_{4}\right) \mid\right] \\ &=\frac{0.031}{56.430}\left[\frac{\frac{1}{2} \times 10^{-3}}{0.031}+\frac{\frac{1}{2} \times 10^{-3}}{56.430}\right] \\ & \leqslant 10^{-5} \end{aligned} e(x2/x4)x41(x2x2)(x4)2x2(x4x4)=x4x2er(x2)x4x2er(x4)x4x2[e1(x2)+er(x4)]=56.4300.031[0.03121×103+56.43021×103]105


例5

S = 1 2 g t 2 S=\frac{1}{2} g t^{2} S=21gt2,假定 g g g是准确的,而对 t t t的测量有0.1秒的误差,证明当t增大时 S S S的绝对误差增大,而相对误差却减小。
绝对误差 e ( S ) = S − S ∗ = g t ( t − t ∗ ) = g t e ( t ) e(S)=S-S^{*}=g t\left(t-t^{*}\right)=g t e(t) e(S)=SS=gt(tt)=gte(t) 相对误差
e r ( S ) = S − S ∗ S = g t ( t − t ∗ ) 1 2 g t 2 = 2 e ( t ) t e_{r}(S)=\frac{S-S^{*}}{S}=\frac{g t\left(t-t^{*}\right)}{\frac{1}{2} g t^{2}}=\frac{2 e(t)}{t} er(S)=SSS=21gt2gt(tt)=t2e(t)由于 e ( t ) e(t) e(t)为定值,因此t增大时绝对误差变大,相对误差变小。


例6

用秦九韶算法求多项式 p ( x ) = 3 x 5 − 2 x 3 + x + 7 p(x)=3 x^{5}-2 x^{3}+x+7 p(x)=3x52x3+x+7 x = 3 x=3 x=3处的值。
根据秦九韶算法,有 p ( x ) = ( ( 3 x 2 − 2 ) x 2 + 1 ) x + 7 p(x) = ((3x^2-2)x^2+1)x+7 p(x)=((3x22)x2+1)x+7,代入可得值为685。


例7

用迭代法 x k + 1 = 1 1 + x k ( k = 0 , 1 , ⋯   ) x_{k+1}=\frac{1}{1+x_{k}}(k=0,1, \cdots) xk+1=1+xk1(k=0,1,)求方程 x 2 + x − 1 = 0 x^{2}+x-1=0 x2+x1=0的正根 x ∗ = − 1 + 5 2 x^{*}=\frac{-1+\sqrt{5}}{2} x=21+5 ,取 x 0 = 1 x_{0}=1 x0=1。如果使用加权平均迭代公式: x k + 1 = ω x k + ( 1 − ω ) 1 1 + x k x_{k+1}=\omega x_{k}+(1-\omega) \frac{1}{1+x_{k}} xk+1=ωxk+(1ω)1+xk1 验证当 ω = 7 25 \omega=\frac{7}{25} ω=257时,采用该加权平均公式比迭代法收敛快。
所谓收敛快不快看的就是有效数字的位数。那么先看原始的迭代法,有:
x 0 = 1 , x 1 = 0.5 , x 2 = 0.667 , x 3 = 0.6 , x 4 = 0.625 x_{0}=1,x_{1}=0.5,x_{2}=0.667,x_{3}=0.6,x_{4}=0.625 x0=1x1=0.5x2=0.667x3=0.6x4=0.625。可以看到直到 x 4 x_{4} x4的有效数字位数仍只有1;
而对于加权平均迭代法,有 x 0 = 1 , x 1 = 0.64 , x 2 = 0.618024 , x 3 = 0.618034 , x 4 = 0.618034 x_{0}=1,x_{1}=0.64,x_{2}=0.618024,x_{3}=0.618034,x_{4}=0.618034 x0=1x1=0.64x2=0.618024x3=0.618034x4=0.618034。可以看到在 x 3 x_{3} x3时有效数字便有5位,收敛更快。

  • 1
    点赞
  • 17
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值