Description
小时候的雨荨非常听话,是父母眼中的好孩子。在学校是老师的左右手,同学的好榜样。后来她成为艾利斯顿第二
代考神,这和小时候培养的良好素质是分不开的。雨荨的妈妈也为有这么一个懂事的女儿感到高兴。一次期末考试
,雨荨不知道第多少次,再次考了全年级第一名。雨荨的妈妈看到女儿100分的成绩单时,脸上又泛起了幸福的笑
容,作为奖励,她给雨荨买了n个布娃娃。细心的雨荨发现,第i个布娃娃有一个耐心值P[i]以及一个魅力值C[i],
并且还有能够忍受的耐心值的上限R[i]以及下限L[i]。当一个布娃娃j满足L[j]<=P[i]并且P[i]<=R[j],那么布娃
娃j喜欢布娃娃i。雨荨还发现,一个布娃娃有可能喜欢它自己。每个布娃娃心中都有一个谜团,具体来说就是:第
i个布娃娃想知道喜欢它的布娃娃中,魅力值第i大的布娃娃的魅力值是多少,并且称这个布娃娃的谜团答案为这个
魅力值的大小,如果不存在,那么这个布娃娃的谜团答案为0。鉴于雨荨的上司栋栋不让题目的数据过大,下面给
出数据的生成方法:给出16个参数:
Padd, Pfirst, Pmod, Pprod, Cadd, Cfirst, Cmod, Cprod, Ladd, Lfirst, Lmod, Lprod, Radd, Rfirst, Rmod, Rprod。
P[1] = Pfirst % Pmod, P[i] = (P[i-1] Pprod + Padd + i) % Pmod (i > 1)。
对于C、L、R数组也有类似的得到方式, %代表取余运算。注意:L和R数组生成完之后,如果某个布娃娃的忍耐度上
限小于下限,那么交换它的上限和下限。当然,雨荨也不会让你告诉她每个布娃娃的谜团答案,因为那样会使输出
数据很大。所以雨荨希望你告诉她,所有布娃娃谜团答案的和除以19921228的余数是多少。
Input
输入的第一行有一个整数n,代表布娃娃的个数。
输入的第二行有16个用空格隔开的整数
分别代表Padd,Pfirst,Pmod,Pprod,Cadd,Cfirst,Cmod,Cprod,Ladd,Lfirst,Lmod,Lprod,Radd,Rfirst,Rmod,Rprod。
16个参数均为1到100,000,000中的整数。
Output
输出一个整数,代表所有布娃娃谜团答案的和除以19921228的余数。
Sample Input
3
2 3 4 3 1 4 5 2 3 6 9 1 1 2 3 4
Sample Output
4
题解
一开始想的是一个
nlog2n
的做法
但是我现在已经忘了QAQ。。
因为我后来想了一个更好的,就把它抛弃了。。
首先这题显然是可以离散化的吗。。
L,R,P一起离
C自己离(其实C离不离都可以)
我们就将P排序
然后我们就用一条L,R,P的线扫过去。。
到达一个L的时候就+1,到达一个R的时候就-1
然后到达一个新的P就在线段树上二分一下就好了
具体看代码
感觉挺简单的,应该看得懂
CODE:
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<iostream>
using namespace std;
typedef long long LL;
const LL MAX=1<<28;
const LL N=100005*10;
const LL MOD=19921228;
LL n;
LL P[N],C[N],L[N],R[N];
void print()
{
for (LL u=1;u<=n;u++)
printf("L:%lld R:%lld P:%lld C:%lld\n",L[u],R[u],P[u],C[u]);
printf("\n");
}
void Read()
{
scanf("%lld",&n);
LL Padd,Pfirst,Pmod,Pprod,Cadd,Cfirst,Cmod,Cprod,Ladd,Lfirst,Lmod,Lprod,Radd,Rfirst,Rmod,Rprod;
scanf("%lld %lld %lld %lld %lld %lld %lld %lld %lld %lld %lld %lld %lld %lld %lld %lld",&Padd,&Pfirst,&Pmod,&Pprod,&Cadd,&Cfirst,&Cmod,&Cprod,&Ladd,&Lfirst,&Lmod,&Lprod,&Radd,&Rfirst,&Rmod,&Rprod);
P[1]=Pfirst%Pmod;
for (LL i=2;i<=n;i++) P[i]=(P[i-1]*Pprod+Padd+i)%Pmod;
C[1]=Cfirst%Cmod;
for (LL i=2;i<=n;i++) C[i]=(C[i-1]*Cprod+Cadd+i)%Cmod;
L[1]=Lfirst%Lmod;
for (LL i=2;i<=n;i++) L[i]=(L[i-1]*Lprod+Ladd+i)%Lmod;
R[1]=Rfirst%Rmod;
for (LL i=2;i<=n;i++) R[i]=(R[i-1]*Rprod+Radd+i)%Rmod;
for(LL i=1;i<=n;i++) if(L[i]>R[i])swap(L[i],R[i]);
}
LL a[N],cnt;//这个数组是属于c的,表示这个位置其实是多少
LL A[N],Cnt;//这个是离散化专用
LL find (LL x)
{
LL l=1,r=Cnt;
while (l<=r)
{
LL mid=(l+r)>>1;
if (A[mid]==x) return mid;
else if (A[mid]>x) r=mid-1;
else l=mid+1;
}
}
void prepare ()//预处理 大概就是离散化一下
{
// print();
cnt=0;
for (LL u=1;u<=n;u++)
a[++cnt]=C[u];
sort(a+1,a+1+cnt);LL cntt=cnt;cnt=1;
for (LL u=2;u<=cntt;u++)
if (a[u]!=a[cnt])
a[++cnt]=a[u];
for (LL u=1;u<=n;u++)
{
LL l=1,r=cnt;
while (l<=r)
{
LL mid=(l+r)>>1;
if (a[mid]==C[u]) {C[u]=mid;break;}
else if (a[mid]>C[u]) r=mid-1;
else l=mid+1;
}
}
Cnt=0;
for (LL u=1;u<=n;u++) A[++Cnt]=P[u],A[++Cnt]=L[u],A[++Cnt]=R[u];
sort(A+1,A+1+Cnt);cntt=Cnt;Cnt=1;
for (LL u=2;u<=cntt;u++)
if (A[u]!=A[Cnt])
A[++Cnt]=A[u];
for (LL u=1;u<=n;u++) L[u]=find(L[u]),R[u]=find(R[u]),P[u]=find(P[u]);
// print();
}
struct qt
{
LL x,y,z,last;
}e[N];LL num,last[N];
void init (LL x,LL y,LL z)
{
num++;
e[num].x=x;e[num].y=y;e[num].z=z;
e[num].last=last[x];
last[x]=num;
}
struct qy
{
LL l,r;
LL s1,s2;
LL c;//这一段有多少
}s[N];
void bt (LL l,LL r)
{
LL a=++num;
s[a].l=l;s[a].r=r;
s[a].c=0;
if (l==r) return ;
LL mid=(l+r)>>1;
s[a].s1=num+1;bt(l,mid);
s[a].s2=num+1;bt(mid+1,r);
}
void change (LL now,LL x,LL z)
{
s[now].c+=z;
if (s[now].l==s[now].r) return ;
LL mid=(s[now].l+s[now].r)>>1;
LL s1=s[now].s1,s2=s[now].s2;
if (x<=mid) change(s1,x,z);
else change(s2,x,z);
}
struct ql
{
LL id,p;
}shen[N];
bool cmp (ql a,ql b){return a.p<b.p;}
LL get (LL now,LL x)
{
if (s[now].l==s[now].r) return s[now].l;
LL s1=s[now].s1,s2=s[now].s2;
if (s[s2].c>=x) return get(s2,x);
else return get(s1,x-s[s2].c);
}
void solve ()
{
/* print();
printf("%lld\n",cnt);
for (LL u=1;u<=cnt;u++) printf("%lld ",a[u]);
printf("\n");*/
num=0;memset(last,-1,sizeof(last));
for (LL u=1;u<=n;u++){init(L[u],C[u],1);init(R[u]+1,C[u],-1);}
num=0;bt(0,cnt);
change(1,0,MAX);
for (LL u=1;u<=n;u++) shen[u]={u,P[u]};
sort(shen+1,shen+1+n,cmp);
shen[0].p=0;
LL ans=0;
for (LL u=1;u<=n;u++)
{
for (LL i=shen[u-1].p+1;i<=shen[u].p;i++)//吧这些都加上
for (LL j=last[i];j!=-1;j=e[j].last)
{
change(1,e[j].y,e[j].z);
// printf("YES:%lld %lld\n",e[j].y,e[j].z);
}
// printf("%lld %lld %lld\n",shen[u].p,shen[u].id,get(1,shen[u].id));
ans=ans+a[get(1,shen[u].id)];
ans%=MOD;
}
printf("%lld\n",ans);
}
int main()
{
Read();
prepare();
solve();
return 0;
}