本文参考:https://www.jianshu.com/p/28bfeb2ca8a2
https://blog.csdn.net/guowei_huai/article/details/117003086
集成学习案例-幸福感预测
本次案例来源于天池的一个比赛,赛题使用 139 维的特征,使用 8000 余组数据进行对于个人幸福感的预测(预测值为1,2,3,4,5,其中1代表幸福感最低,5代
表幸福感最高)。以均方误差MSE为评价标准,因为评价标准为均方误差,所以使用回归问题的思路解决该问.
Blending集成学习方式:
(1) 将数据划分为训练集和测试集(test_set),其中训练集需要再次划分为训练集(train_set)和验证集(val_set);
(2) 创建第一层的多个模型,这些模型可以使同质的也可以是异质的;
(3) 使用train_set训练步骤2中的多个模型,然后用训练好的模型预测val_set和test_set得到val_predict, test_predict1;
(4) 创建第二层的模型,使用val_predict作为训练集训练第二层的模型;
(5) 使用第二层训练好的模型对第二层测试集test_predict1进行预测,该结果为整个测