论文笔记系列:经典主干网络(二)-- ResNet

本文深入探讨ResNet网络,揭示深度残差学习如何解决模型退化问题,允许训练超过1000层的网络。ResNet通过残差结构实现恒等映射,加速梯度传播,提高深层网络的训练效果和精度。实验表明,ResNet在网络深度增加时仍能保持高精度,验证了残差学习的有效性。
摘要由CSDN通过智能技术生成

 ✨写在前面:强烈推荐给大家一个优秀的人工智能学习网站,内容包括人工智能基础、机器学习、深度学习神经网络等,详细介绍各部分概念及实战教程,通俗易懂,非常适合人工智能领域初学者及研究者学习。➡️点击跳转到网站


深度残差学习网络  Deep Residual Learning for Image Recognition 

 论文链接: 《Deep Residual Learning for Image Recognition》

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

GoAI

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值