DDS原理及FPGA实现
一个按一定速度沿x轴行进,同时半径按一定频率在圆周上滑动的圆,最后留下的痕迹就是一个正余弦波。
DDS全称直接数字频率合成(Direct Digital Synthesis),简单来讲,分以下几步:
1.抽样
既然是数字频率合成,那么从模拟信号变成数字信号的过程必不可少。这个过程就是抽样的过程。根据奈奎斯特采样定律,我们在采样过程要保留源信号的信息,那么采样率至少为源信号频率的两倍。换句话说,我们想要在数字合成出来的波形还能还原原始信号的信息的话,我们一个周期中至少要有两个以上的“点”。
但一般来讲,为了波形的完整,我们一个周期中最少保留的点还会多一些。如果假设一个周期最小4个点,采样频率为为100MSPS,那我们可以还原的源信号的频率最大为25M
我们通常对一个周期采样的点数为2^N个,在这里,我采样为2的8次方,即256个。
采样的过程可以通过matlab进行模拟,设置好采样的位宽和深度便可以生成采样数据。
width=10; %rom的位宽
depth=1024; %rom的深度
x=linspace(0,2*pi,depth); %在一个周期内产生1024个采样点
y_sin=sin(x); %生成正弦数据
y_sin=round(y_sin*(2^(width-1)-1))+2^(width-1)-1; %将余弦数据全部转换为整数
fid=fopen('C:\Users\Leixx\Desktop\sin_txt.txt','w'); %创建.txt文件
fprintf(fid,'%d;\n',y_sin); %向.txt文件中写入数据
fclose(fid); %关闭.txt文件
得到的部分采样数据如下
511;
514;
517;
520;
524;
527;
530;
533;
536;
539;
542;
545;
549;
552;
555;
558;
561;
564;
567;
570;
574;
577;
580;
583;
586;
589;
592;
595;
598;
602;
605;
608;
611;
614;
617;
620;
623;
626;
629;
632;
635;
638;
641;
644;
647;
650;
653;
656;
2.合成
DDS技术的核心,简单来说就是将我们的抽样数据还原成模拟信号。还原的方式和文章讲到的一样:以一定的频率将抽样数据依次输出,就可以还原波形。
假设,以100M的频率输出我们的1024个抽样数据,则将会得到一个频率为
f o u t = 100 M / 1024 = 97 K H Z fout=100M/1024=97KHZ fout=100M/1024=97KHZ
的正弦波。这就达到了最初的信号输出。
那如何调频呢?
调频的方案有两种:一种是改变我们的时钟频率,将我们读取抽样数据的速度变快或者变慢,这样就可以改变频率。这种方法对于当下很多开发板固定的晶振频率来说比较难以实现。
另一种方案就是减少我们输出的抽样数据,输出的抽样数据越少,按照上面的公式,频率便会越高。
比如说,我们最开始查数据是按照依次加一的方式,那我们改成依次加二,显然,这样做之后,输出频率便会提高。但也会带来一个问题,我们输出的点数少了,那么点与点之间不再平滑,输出的波形会变得阶梯化。
显然加一会得到一个频率,加二会得到另一个频率,但这两个频率都不是我想要的怎么办?
如何精准调频?
假设我们需要得到一个频率很低的信号,1KHZ,而我们的时钟频率为100M,我们在一个周期内输出1024个点也达不到这样的频率。因此我们就需要在输出的每个数据之间进行等待,可以通过设置计数器来解决这个问题。为了使输出的信号尽可能的低,我们设置一个32位的累加器。将高10位作为查表的地址。对于1KHZ,有
f o u t f w o r d = f c l k 2 32 \frac{fout}{fword}=\frac{fclk}{2^{32}} fword