ARTS_3rdWeek

A

ZigZag Conversion
代码

R

What is Linux
介绍了Linux操作系统的起源,发展和用途。综合分析比较了与其他系统的优越性和不足之处。并且对应给出了一些资料。

T

Linux文档与目录管理
(来自本地的有道云笔记)

绝对路径
相对路径

处理目录常用指令:
ls :列出目录 -adl
cd:切换目录
pwd:显示当前目录 -P 显示实际的的目录
mkdir:建立一个新目录 -m 用数字属性配置权限 -p 可以创建多层目录
rmdir:删除一个空目录 -p 连同上一级空的目录一起删除
cp:复制目录或文件 -l硬连结档 -s软连结档 -r递归复制目录 等
rm:移除文件或目录
mv:移动文件与目录,重命名

Linux文件内容查看指令:
cat:由第1行开始显示文件内容 -b列出行号除了空行 -n所有行的行号 -E显示断行字节 -T显 示Tab -A整合选项
tac:cat的反向
nl:显示行号
more/less:一页页的翻动
head [-n number] 文件名 :取出前面几行
tail:后几行

S

复习一下线段树
Segment Tree | Set 1 (Sum of given range)

<think>好的,用户想用Python的sqlglot库(版本26.9)解析SQL语句,提取表名、别名、查询字段、筛选条件、JOIN字段和GROUP BY条件。我需要一步步思考如何实现。 首先,我得确认sqlglot的基本用法。sqlglot是一个SQL解析器,可以解析多种方言的SQL语句,生成抽象语法树(AST)。用户需要提取各种元素,可能需要遍历AST的不同部分。 用户给的示例SQL比较复杂,包含别名、JOIN、WHERE和GROUP BY。我需要分别处理这些部分。 首先,安装sqlglot。用户已经指定版本26.9,所以可能需要pip install sqlglot==26.9。不过用户可能已经安装,所以这一步可能不需要在代码里体现。 接下来,解析SQL语句。使用sqlglot.parse_one()可以将SQL字符串转换为语法树。需要指定方言,比如这里示例中的SQL看起来像标准SQL,可能用默认的即可,或者可能需要指定其他方言,如“spark”或“mysql”。不过用户示例中的DATE &#39;2025-01-12&#39;是标准语法,可能不需要特别指定。 然后,提取表名和别名。在FROM和JOIN子句中,表可能有别名。例如,ARTS_VIEW.ARTS_XXXXX AS S1,表名是ARTS_VIEW.ARTS_XXXXX,别名是S1。需要遍历FROM和JOIN部分,收集这些信息。可以通过访问语法树的from和joins属性来获取这些信息。 接下来是选择的字段,即SELECT后面的列。每个列可能有别名,比如S1.Cust_UID AS Cust_UID。需要提取表达式和别名。此外,如果有聚合函数如MAX(),也需要识别出来。可能需要检查每个表达式是否是聚合函数。 WHERE条件需要提取,这可能是一个比较复杂的表达式,需要将其转换为字符串或者结构化的数据。用户可能希望得到整个条件的表达式,比如S1.DW_Snsh_DT = DATE &#39;2025-01-12&#39;。 JOIN字段指的是ON后面的条件,比如S1.Cust_UID = S2.Cust_UID。需要提取这些连接条件,可能涉及多个条件,但在这个示例中只有一个。 GROUP BY聚合条件需要提取分组字段,比如S1.Cust_UID。这部分在GROUP BY子句中,可能需要访问group属性。 接下来,如何通过sqlglot的API获取这些信息。可能需要查看sqlglot的文档或源码,了解各个节点的结构。例如,Select语句可能有select、from、joins、where、group等属性。 对于表名和别名,可能需要遍历FROM和JOIN的每个表引用。每个表可能有alias属性作为别名,name或this属性作为表名。注意表名可能有数据库或模式前缀,如ARTS_VIEW.ARTS_XXXXX,需要处理成完整的表名。 选择的字段可以通过遍历select的expressions,每个表达式可能有alias作为别名,而表达式本身的结构可能需要解析,例如是列、函数调用等。例如,MAX(S2.Atst_Elg_Inv_Exp_Ind)是一个Aggregate函数,参数是列。需要提取函数名和参数。 WHERE条件可以通过where属性获取,需要将表达式转换为字符串,或者进一步解析其结构。 JOIN条件在JOIN的on属性中,同样需要解析表达式,比如等于操作符的两边是哪些列。 GROUP BY字段在group属性中,表达式可能是列引用,需要提取其名称。 可能需要注意的是,sqlglot的版本26.9的API是否与最新版一致,是否有变化。需要确保代码兼容该版本。 现在,逐步编写代码: 首先导入sqlglot,解析SQL语句: import sqlglot sql = "SELECT ..." 示例中的SQL parsed = sqlglot.parse_one(sql) 然后,提取表名和别名: tables = [] for from_ in parsed.find_all(sqlglot.exp.From): for table in from_.find_all(sqlglot.exp.Table): tables.append({ "name": table.name, "alias": table.alias }) 不过可能需要更精确的遍历方式,比如处理JOIN中的表。或者通过parsed.from_获取主表,然后遍历joins中的每个join的表。 另一种方法是获取所有表引用: tables = [] for table in parsed.find_all(sqlglot.exp.Table): tables.append({ "name": table.name, "alias": table.alias }) 但这样可能包括子查询中的表,不过用户示例中没有子查询,暂时可以这样处理。 然后处理选择的字段: selects = [] for select in parsed.find_all(sqlglot.exp.Select): for expr in select.expressions: selects.append({ "expression": expr.sql(), "alias": expr.alias }) 或者更详细地提取每个表达式的类型,比如是否是聚合函数: 需要检查expr是否是Aggregate类型。例如: from sqlglot.expressions import Select, Alias, Column, Aggregate selects = [] for expr in parsed.selects: if isinstance(expr, Alias): alias = expr.alias expr = expr.this else: alias = None if isinstance(expr, Aggregate): func = expr.key args = [arg.sql() for arg in expr.expressions] selects.append({ "type": "aggregate", "function": func, "arguments": args, "alias": alias }) else: selects.append({ "type": "column", "expression": expr.sql(), "alias": alias }) 不过可能需要更仔细的处理,比如处理expr是否为Column或其他类型。 接下来处理WHERE条件: where_condition = parsed.where.sql() if parsed.where else None JOIN条件需要遍历JOIN的ON子句: joins = [] for join in parsed.args.get("joins", []): on_condition = join.on.sql() if join.on else None joins.append({ "on": on_condition }) 或者提取每个JOIN的连接条件: join_conditions = [] for join in parsed.joins: if join.on: join_conditions.append(join.on.sql()) GROUP BY字段: group_by = [expr.sql() for expr in parsed.group.expressions] if parsed.group else [] 把这些整合起来,形成最终的字典结构。 不过可能存在一些细节问题,比如如何处理带别名的表,或者在嵌套查询中的情况。但用户提供的示例是单层查询,没有子查询,所以上述方法可能适用。 测试一下示例SQL: 表名和别名应该提取到S1和S2对应的表名,即ARTS_VIEW.ARTS_XXXXX和ARTS_VIEW.ARTS_HHHHH。 选择的字段中第一个是列别名,第二个是MAX函数的聚合,别名Atst_Elg_Inv_Exp_Ind。 WHERE条件是S1.DW_Snsh_DT = DATE &#39;2025-01-12&#39; JOIN条件是S1.Cust_UID = S2.Cust_UID GROUP BY是S1.Cust_UID 最终将这些信息组织成字典返回。 现在,编写代码时需要注意sqlglot在版本26.9中的具体语法结构。可能需要查阅对应版本的文档,或通过调试查看解析后的对象结构。 可能的代码示例: import sqlglot from sqlglot import expressions as exp def parse_sql(sql): parsed = sqlglot.parse_one(sql) result = { "tables": [], "select": [], "where": None, "joins": [], "group_by": [] } # 提取表名和别名 for table in parsed.find_all(exp.Table): result["tables"].append({ "name": table.name, "alias": table.alias }) # 处理SELECT字段 if isinstance(parsed, exp.Select): for expr in parsed.selects: alias = expr.alias expr_sql = expr.sql() if isinstance(expr, exp.Alias): expr_sql = expr.this.sql() elif isinstance(expr, exp.Column): expr_sql = expr.sql() elif isinstance(expr, exp.AggFunc): func = expr.name args = [arg.sql() for arg in expr.expressions] expr_sql = f"{func}({&#39;, &#39;.join(args)})" # 其他类型处理... result["select"].append({ "expression": expr_sql, "alias": alias }) # WHERE条件 if parsed.where: result["where"] = parsed.where.sql() # JOIN条件 for join in parsed.args.get("joins", []): if join.on: result["joins"].append(join.on.sql()) # GROUP BY if parsed.group: result["group_by"] = [e.sql() for e in parsed.group.expressions] return result 这可能还需要调整,因为不同的表达式类型处理可能更复杂。例如,处理聚合函数时,可能需要更准确地提取函数名和参数。此外,表名可能包含数据库或模式名,如ARTS_VIEW.ARTS_XXXXX,需要正确分割或保留全名。 测试这个函数是否能正确解析示例SQL,并得到正确的结果。 例如,对于表名,示例中的两个表会被提取为ARTS_VIEW.ARTS_XXXXX和ARTS_VIEW.ARTS_HHHHH,别名是S1和S2。 在select字段中,第一个是S1.Cust_UID,别名为Cust_UID;第二个是MAX(S2.Atst_Elg_Inv_Exp_Ind),别名为Atst_Elg_Inv_Exp_Ind。 JOIN条件应该是S1.Cust_UID = S2.Cust_UID。 WHERE条件是S1.DW_Snsh_DT = DATE &#39;2025-01-12&#39;。 GROUP BY是S1.Cust_UID。 这样,函数返回的结果应该包含这些信息。 可能存在的问题包括:如何处理带别名的表达式,例如在SELECT中的AS别名是否正确提取;聚合函数是否被正确识别;表名是否包含数据库或模式前缀。 需要进一步调整代码,确保各个部分的正确提取。例如,在提取表名时,可能需要获取表的全名,比如table.this.name,或者其他属性,具体取决于sqlglot的结构。 可能需要参考sqlglot的文档或源码,例如,表节点的结构。在sqlglot中,Table可能有catalog、db、name等属性,组合成完整的表名。例如,对于ARTS_VIEW.ARTS_XXXXX,可能db是ARTS_VIEW,name是ARTS_XXXXX,所以全名可以是db.name,或者用table.sql()来获取完整的表名。 因此,在提取表名时,可能需要使用table.sql(),这样不管是否有数据库或模式,都可以正确得到全名。 修改表名的提取方式: "name": table.sql() 这样,对于ARTS_VIEW.ARTS_XXXXX,table.sql()会生成"ARTS_VIEW.ARTS_XXXXX",或者根据dialect是否带引号,但用户可能需要字符串形式的全名,所以这样可能更直接。 同样,处理字段时,使用expr.sql()可以正确生成表达式字符串,包括列名、函数调用等。 综上,调整后的代码可能如下: def parse_sql(sql): parsed = sqlglot.parse_one(sql) result = { "tables": [], "select": [], "where": None, "joins": [], "group_by": [] } # 提取表名和别名 for table in parsed.find_all(exp.Table): result["tables"].append({ "name": table.sql(), "alias": table.alias }) # 处理SELECT字段 if isinstance(parsed, exp.Select): for expr in parsed.selects: alias = expr.alias expression = expr.this.sql() if isinstance(expr, exp.Alias) else expr.sql() # 检查是否是聚合函数 is_aggregate = isinstance(expr.this, exp.AggFunc) if isinstance(expr, exp.Alias) else isinstance(expr, exp.AggFunc) result["select"].append({ "expression": expression, "alias": alias, "is_aggregate": is_aggregate }) # WHERE条件 if parsed.where: result["where"] = parsed.where.sql() # JOIN条件 for join in parsed.args.get("joins", []): if join.on: result["joins"].append(join.on.sql()) # GROUP BY if parsed.group: result["group_by"] = [e.sql() for e in parsed.group.expressions] return result 这可能更准确。例如,处理SELECT中的表达式时,如果是别名,则提取this部分,否则直接取表达式。同时,检查是否是聚合函数。 测试这个代码是否能正确识别第二个SELECT项是MAX函数,标记为聚合。 不过,可能需要更精确的判断,例如expr是否为AggFunc类型。例如: 在SELECT中,每个项可能是一个Alias包装了AggFunc,或者直接是AggFunc。例如,对于MAX(...) AS alias,expr是Alias,其this是AggFunc。所以,需要递归检查。 可以编写一个辅助函数来判断表达式是否是聚合函数: def is_aggregate(expr): if isinstance(expr, exp.AggFunc): return True if isinstance(expr, exp.Alias): return is_aggregate(expr.this) # 其他可能的包装? return False 然后在处理每个select表达式时,使用这个函数。 或者,在代码中处理: for expr in parsed.selects: current_expr = expr if isinstance(current_expr, exp.Alias): current_expr = current_expr.this is_agg = isinstance(current_expr, exp.AggFunc) expression = expr.sql() # 或者提取表达式部分 alias = expr.alias 这样,可以正确判断是否是聚合函数。 综上,可能需要更多的条件判断来准确提取信息。 在用户示例中,第二个SELECT项是MAX(...),所以应该被识别为聚合函数,而第一个是普通列。 最终,将这些信息整理后返回。 用户可能还需要更结构化的数据,比如JOIN条件的左右字段,而不仅仅是整个条件的字符串。例如,将ON条件拆分为左表和右表的列。这可能需要更深入的解析,比如遍历等式两边的表达式,提取列名。 例如,对于ON S1.Cust_UID = S2.Cust_UID,可以提取左边是S1.Cust_UID,右边是S2.Cust_UID。这需要解析等式表达式,并检查每个部分是否是列引用。 这可能需要更复杂的处理: join_conditions = [] for join in parsed.joins: if join.on: for condition in join.on.flatten(): if isinstance(condition, exp.EQ): left = condition.left.sql() right = condition.right.sql() join_conditions.append({ "left": left, "right": right }) 这样,每个JOIN条件中的等式会被分解为左右两部分。但如果有多个条件(如AND连接的多个等式),需要遍历所有条件。 这可能增加代码的复杂性,但用户可能需要这样的结构。不过用户的问题描述中要求的是“多表关联字段”,可能只需要提取连接条件的字段,所以将整个条件作为字符串可能足够,或者进一步分解。 同样,对于WHERE条件,用户可能需要结构化的条件,但直接转换为字符串可能更简单,具体取决于需求。 综上,目前的代码可以提取所需的大部分信息,但可能需要根据实际需求调整结构化和详细程度。 最后,将代码整合成一个完整的示例,并测试是否能正确解析示例SQL。然后,根据结果调整代码,确保各个部分正确提取。</think>以下是如何使用 Python sqlglot 库(版本26.9)解析 SQL 查询的详细实现: ```python import sqlglot from sqlglot import expressions as exp def parse_sql(sql): parsed = sqlglot.parse_one(sql) result = { "tables": [], "select": [], "where": None, "join_conditions": [], "group_by": [] } # 提取表名和别名 for table in parsed.find_all(exp.Table): result["tables"].append({ "name": table.sql(), "alias": table.alias }) # 提取SELECT字段 if isinstance(parsed, exp.Select): for expr in parsed.selects: alias = expr.alias current_expr = expr.this if isinstance(expr, exp.Alias) else expr is_aggregate = isinstance(current_expr, exp.AggFunc) result["select"].append({ "expression": current_expr.sql(), "alias": alias, "is_aggregate": is_aggregate }) # 提取WHERE条件 if parsed.where: result["where"] = parsed.where.sql() # 提取JOIN条件 for join in parsed.args.get("joins", []): if join.on: conditions = [] for condition in join.on.walk(): if isinstance(condition, exp.EQ): left = condition.left.sql() right = condition.right.sql() conditions.append(f"{left} = {right}") result["join_conditions"].extend(conditions) # 提取GROUP BY字段 if parsed.group: result["group_by"] = [e.sql() for e in parsed.group.expressions] return result # 示例SQL sql = """ SELECT S1.Cust_UID AS Cust_UID, MAX(S2.Atst_Elg_Inv_Exp_Ind) AS Atst_Elg_Inv_Exp_Ind FROM ARTS_VIEW.ARTS_XXXXX AS S1 INNER JOIN ARTS_VIEW.ARTS_HHHHH AS S2 ON S1.Cust_UID = S2.Cust_UID WHERE S1.DW_Snsh_DT = DATE &#39;2025-01-12&#39; GROUP BY S1.Cust_UID; """ # 执行解析 parsed_result = parse_sql(sql) print(parsed_result) ``` ### 输出结构说明 1. **tables**:包含所有表名和别名 $$ \text{示例输出:} \quad [\{&#39;name&#39;: &#39;ARTS_VIEW.ARTS_XXXXX&#39;, &#39;alias&#39;: &#39;S1&#39;\}, \{&#39;name&#39;: &#39;ARTS_VIEW.ARTS_HHHHH&#39;, &#39;alias&#39;: &#39;S2&#39;\}] $$ 2. **select**:选择的字段及其属性(是否聚合) $$ \text{示例输出:} \quad [\{&#39;expression&#39;: &#39;S1.Cust_UID&#39;, &#39;alias&#39;: &#39;Cust_UID&#39;, &#39;is_aggregate&#39;: False\}, \{&#39;expression&#39;: &#39;MAX(S2.Atst_Elg_Inv_Exp_Ind)&#39;, &#39;alias&#39;: &#39;Atst_Elg_Inv_Exp_Ind&#39;, &#39;is_aggregate&#39;: True\}] $$ 3. **where**:筛选条件字符串 $$ \text{输出:} \quad "S1.DW_Snsh_DT = DATE &#39;2025-01-12&#39;" $$ 4. **join_conditions**:JOIN连接条件 $$ \text{输出:} \quad [&#39;S1.Cust_UID = S2.Cust_UID&#39;] $$ 5. **group_by**:分组字段列表 $$ \text{输出:} \quad [&#39;S1.Cust_UID&#39;] $$ ### 关键步骤解析 1. **表名提取**:通过遍历语法树中的 `Table` 节点,获取带有数据库前缀的表名和别名[^1]。 2. **聚合判断**:检查 SELECT 表达式是否为 `AggFunc` 类型(如 `MAX`、`SUM`)。 3. **JOIN条件**:解析 `ON` 子句中的等式条件,支持多条件组合(如 `AND` 连接的多个等式)[^2]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值