机器学习学习笔记之——监督学习之朴素贝叶斯分类器

朴素贝叶斯分类器

朴素贝叶斯分类器的训练速度比线性模型更快。这种高效率所付出的代价是,朴素贝叶斯模型的泛化能力要比线性分类器(如 LogisticRegression 和 LinearSVC)稍差。

朴素贝叶斯模型如此高效的原因在于,它通过单独查看每个特征来学习参数,并从每个特征中收集简单的类别统计数据。scikit-learn 中实现了三种朴素贝叶斯分类器:GaussianNB、BernoulliNB 和 MultinomialNB。GaussianNB 可应用于任意连续数据,而 BernoulliNB 假定输入数据为二分类数据MultinomialNB 假定输入数据为计数数据(即每个特征代表某个对象的整数计数,比如一个单词在句子中出现的次数)。BernoulliNB 和 MultinomialNB 主要用于文本数据分类

BernoulliNB 分类器计算每个类别中每个特征不为 0 的元素个数。用一个简单的例子来说明会很容易理解:

X = np.array([[0, 1, 0, 1],
              [1, 0, 1, 1],
              [0, 0, 0, 1],
              [1, 0, 1, 0]])
y = np.array([0, 1, 0, 1])

这里我们有 4 个数据点,每个点有 4 个二分类特征。一共有两个类别:0 和 1。对于类别 0(第 1、3 个数据点),第一个特征有 2 个为零、0 个不为零,第二个特征有 1 个为零、1 个不为零,以此类推。然后对类别 1 中的数据点计算相同的计数。计算每个类别中的非零元素个数:

counts = {}
for label in np.unique(y):
    # 对每个类别进行遍历
    # 计算(求和)每个特征中 1 的个数
    counts[label] = X[y == label].sum(axis=0)
print("Feature counts:\n{}".format(counts))
'''
Feature counts:
{0: array([0, 1, 0, 2]), 1: array([2, 0, 2, 1])}
'''

另外两种朴素贝叶斯模型(MultinomialNB 和 GaussianNB)计算的统计数据类型略有不同。MultinomialNB 计算每个类别中每个特征的平均值而 GaussianNB 会保存每个类别中每个特征的平均值和标准差


  • 参数

    MultinomialNB 和 GaussianNB 都只有一个参数 alpha,用于控制模型复杂度。alpha 的工作原理是,算法向数据中添加 alpha 这么多的虚拟数据点,这些点对所有特征都取正值。这可以将统计数据 “平滑化”(smooyhing)。alpha 越大,平滑性越强,模型的复杂度就越低。

  • 优点

    GaussianNB 主要用于高维数据,而另外两种朴素贝叶斯模型则广泛用于稀疏计数数据,比如文本。MultinomialNB 的性能通常会高于 BernoulliNB,特别是在包含很多非零特性的数据集(即大型文档)上。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值