论文阅读——Meta-Learning to Detect Rare Objects

1. Motivation

  1. CNN在视觉领域被广泛应用,关键驱动因素就是以大量带注释的图像的形式进行监督。然而,在自动驾驶汽车等许多实际应用中,识别系统需要从非常有限的样本中快速识别一些从未见过的对象。
  2. 基于小样本目标检测研究较少。现有的工作大多是在分类的背景下进行的,不能直接应用于其他任务。

2. Contribution

  1. 开发了一个概念简单但功能强大的基于元学习的框架,以统一、连贯的方式同时处理Few shot分类和Few shot定位.
  2. 引入了一个权重预测元模型,能够从少数例子中预测特定类别的组件的参数.

3. Method

3.1 Framework

在这里插入图片描述

  • 元训练中学习基础检测器与元模型(左图):训练大样本基检测器,获得类别无关参数;我们以Few shot的基础检测任务为样本,并学习从小样本到大样本类别特定参数的权重预测元模型T。
  • 在元测试过程中学习新的检测器(右图):我们从基本检测器初始化类别无关参数,并使用T来预测类别特定参数。浅颜色浅表示小样本参数;深色表示大样本或者预测参数。

3.2 Setup for Few-Shot Detection

  • C b a s e C_{base} Cbase:基类; C n o v e l C_{novel} Cnovel:新类。 C b a s e ∩ C n o v e l = ∅ C_{base} \cap C_{novel} = \empty CbaseCnovel=
  • S b a s e S_{base} Sbase:大样本基数据集; S n o v e l S_{novel} Snovel:新类数据集,其中每个新类都有k边界框注释。
  • 元训练:在 S b a s e S_{base} Sbase随机抽取k个样本并训练相应的检测器。
  • 元测试:基检测器通过meta-learner在 S n o v e l S_{novel} Snovel上对新类进行调整。

3.3 Basic Detector and Meta-Strategies

这里的目标是根据 S b a s e S_{base} Sbase S n o v e l S_{novel} Snovel来估计 C n o v e l C_{novel} Cnovel所需的检测器的参数θ。
元学习框架适用于各种基于CNN的检测器。在这里,我们使用Faster R-CNN实例化框架

类别不可知组件的元策略

  • 将卷积网络、RPN和检测网络的底层作为类别无关组件,它们的参数被基类和新类共享。将与类别无关的参数从基本检测器转移到新的检测器,或者将它们用作初始化来进行微调。

特定类别组件的元策略

  • 在Faster R-CNN中,检测网络的顶层包含特定类别的参数,用于对每个类进行包围盒分类和回归。而这些参数是不可直接转移的。
  • 从小数据集上训练的参数到大数据集上训练的参数,其变化的动态模式可以通过通用的、类别无关的转化来描述。
  • 引入一个参数化权值预测元模型T,通过元训练过程来学习这种转换。

3.4 Weight Prediction Meta-Model

  • 对于类别c, w d e t c , ∗ w_{det}^{c,*} wdetc,表示从大数据集 S b a s e S_{base} Sbase学习到的检测网络最后一层特定类别参数。
  • w d e t c w_{det}^{c} wdetc表示从 S b a s e S_{base} Sbase采样的k-shot数据集学习到的相应权重。
  • 权重预测模型T在模型参数空间中让 w d e t c w_{det}^{c} wdetc回归到 w d e t c , ∗ w_{det}^{c,*} wdetc, w d e t c , ∗ ≈ T ( w d e t c , ϕ ) w_{det}^{c,*} \approx T(w_{det}^{c},\phi) wdetc,T(wdetc,ϕ)。学习参数 ϕ \phi ϕ
  • 每个episode,每个类对于的原目标函数:

在这里插入图片描述

    • 上式中的loss表示用于训练检测网络D的标准性能损失(例如,由边界框分类和回归损失组成的多任务损失)。 R o I c RoI^c RoIc表示训练被类别c标记的RoI。
    • w d e t c = [ w c l s c , w l o c c ] w_{det}^{c} = [w_{cls}^c,w_{loc}^c] wdetc=[wclsc,wlocc],包括小样本分类和小样本定位。
  • T可以实现为一个小型全连接神经网络,并与检测器联合训练。

3.5 Meta-Learning Procedure

Stage-wise meta-training

  • 将元训练过程分为两个阶段,分别针对类别不可知组件和特定类别组件。
  • 第一阶段:在整个数据集上训练一个大样本基础检测器 D ( ⋅ , θ ∗ ) D(\cdot,\theta^*) D(,θ),提供参数 w d e t c , ∗ w_{det}^{c,*} wdetc,
  • 第二阶段:每个episode中,从大数据集每个类随机抽取k个样本。使用第一阶段的大样本基础检测器D,将其训练成k-shot检测器。此时与类别的无关的底层参数是冻结的,冻结为那些在大样本数据集中所学的参数。并重新训练类别相关参数 w d e t c w_{det}^c wdetc

Meta testing:

  • S n o v e l S_{novel} Snovel中训练k-shot新类检测器。从基类检测器初始化类无关参数 θ / w d e t c , ∗ \theta / w_{det}^{c,*} θ/wdetc,,并随机初始化类相关参数 w d e t c w_{det}^c wdetc
  • 使用元模型T微调检测器,同时来预测所需要的 w d e t c w_{det}^{c} wdetc

4. Experiment

4.1 域内小样本检测

1. On PASCAL VOC

数据集被随机分成两个不重叠的部分:一个基类集合,每个类有数百或数千个样本;另一个新类集合,每个类有少量样本(k)。

将20个类别随机分为15个基类和5个新类。

在元训练中,我们只使用基类的训练集来学习基检测器和权值预测元模型。在元测试过程中,我们在元模型的指导下调整我们的基础检测器来生成新的检测器。
在PASCAL VOC的3种不同分割下,对5个新类的k shot检测性能(mAP)

  • Scartch:直接学习了5个新类的k-shot检测器,而无需利用基类样本。(仍然在ImageNet上对特征主干进行预训练。)
  • Joint:从大量的基础训练样本和少量的新样本中学习所有20个类的检测器。
  • Transfer:在学习了15个基类的大样本检测器之后,将其微调为5个新类的k-shot检测器。

Ablation studies

1.输入对权重预测元模型T的影响
在这里插入图片描述

  • 输入元模型T:“cls”是RoI分类权重,“loc”是边界框回归权重,“cls”+“loc”都是权重。
  • ‘loc-agn’:训练类别不可知的边界框回归权重。
  • 将这两个权重都作为特定类别的,并将它们都作为T的输入,表现最优。

2. 权重预测元模型T不同实现
在这里插入图片描述

2. On MS COCO

使用5k来自验证集的图像进行评估,其余的训练图像进行训练。

选择了同样出现在PASCAL VOC中的20个类别作为新类,其余60个类别作为基类。

在这里插入图片描述

4.2 跨域小样本检测

COCO → \rightarrow PASCAL
使用COCO上的60个类别作为基类,并使用PASCAL上的所有20个类别作为新类。
对20个新类的10-shot跨域检测性能(mAP)。
在这里插入图片描述

COCO → \rightarrow ImageNet
基类是COCO上的整个80个类别,新类是ImageNet2015上选择的50个不重叠类别。在ImageNet2015上,每个新类包含100张图像。
在COCO→ImageNet下对50个新类的k-shot跨域检测性能:
在这里插入图片描述

4.3 长尾数据检测

我们将数据丰富的头部类别作为基类,而数据贫乏的尾部类别作为新类。我们的方法可以通过学习头部的元模型,然后将其转移到尾部来进行扩展。

在iNaturalist所有类别的长尾检测性能,平均精确度(AP)和平均召回率(AR)

在这里插入图片描述

在iNaturalist中每个类的表现,
在这里插入图片描述

  • y轴(左)和蓝色曲线:长尾分布。y轴(右)和橙色曲线:相对于Faster R-CNN基线,我们的MetaDet对AP的改善。
  • MetaDet显著改善了尾部的检测,特别是对数据极其有限的尾部类进行了较大的边缘检测,同时保持了头部的准确性。

5. Conclusion

  1. 提出了一种新类的Few-shot检测方法,通过元学习以统一、连贯的方式同时处理Few-shot分类和定位。
  2. 提出专门的元学习策略:
    元训练:
    • 先在一个大数据集上训练一个基础检测器D,提供 w d e t c , ∗ w_{det}^{c,*} wdetc,
    • 然后在每个episode上每个类随机抽取k个样本,此时与类别无关参数是冻结的,训练的是类别特定参数 w d e t c , ∗ w_{det}^{c,*} wdetc,
    • 学习目标就是T——权重预测元模块: w d e t c , ∗ w_{det}^{c,*} wdetc, w d e t c , ∗ ≈ T ( w d e t c , ϕ ) w_{det}^{c,*} \approx T(w_{det}^{c},\phi) wdetc,T(wdetc,ϕ)

    元测试:从基本检测器初始化类别无关参数,并使用T来预测类别特定参数。

  1. MetaDet在域内,跨域以及长尾分布的数据上都有较好表现。
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: meta-rpilinux 是一个基于树莓派(Raspberry Pi)开发的操作系统。通过将 Raspberry Pi 与 Linux 结合,meta-rpilinux 提供了一个完整的软硬件平台,可以用于嵌入式系统开发、物联网应用等各种项目。 meta-rpilinux 的设计目标主要是提供一个轻量级、高效能的操作系统,以满足树莓派等小型单板计算机的资源限制和性能需求。它基于 Yocto Project 开发,使用 BitBake 构建系统进行软件包管理和构建过程控制。 通过 meta-rpilinux,用户可以快速搭建一个完整的嵌入式系统环境。它包含了许多必要的软件包和工具,如图形界面桌面环境、网络连接、传感器驱动、数据库等。用户可以根据自己的需求选择和定制所需的软件组件。 在物联网应用方面,meta-rpilinux 提供了许多支持智能设备互联的功能。它支持多种通信协议,如 MQTT,使树莓派可以与其他设备进行数据交换和通信。此外,meta-rpilinux 还支持远程控制和管理,用户可以通过网络连接远程操作和监控树莓派设备。 总之,meta-rpilinux 是一个为树莓派开发的功能丰富的操作系统,可以满足嵌入式系统和物联网应用的需求。它提供了一个强大的开发平台和工具集,让用户能够更容易地实现各种项目和创意。 ### 回答2: meta-rpilinux 是一个项目的名称,它是指使用 Raspberry Pi (树莓派)作为硬件平台,并基于 Raspbian 操作系统制作的一个 Linux 发行版。 meta 是指在计算机科学中的元数据,它通常用于描述其他数据的数据。在这个项目中,meta-rpilinux 可以被理解为用于描述 Raspberry Pi Linux 的一组元数据或元信息。 Raspberry Pi 是一款低成本、高性能的单板计算机,非常适合用于教育、嵌入式系统以及一些创意性项目。而 Raspbian 则是树莓派的官方操作系统,基于 Linux 发行版 Debian,并针对树莓派进行了优化。 meta-rpilinux 的目的是通过对 Raspbian 进行改造,使其更加适应树莓派的硬件架构和特点。它可能包含了一些定制的软件包、配置文件和脚本,以提供更好的性能、功能扩展或特定应用的支持。 通过使用 meta-rpilinux,用户可以在 Raspberry Pi 上快速构建一个定制的 Linux 环境,满足自己的需求。例如,可以根据不同的场景需求,将 Raspberry Pi 配置为一个家庭娱乐中心、智能家居控制中心、远程服务器等。 总的来说,meta-rpilinux 是一个将 Raspbian 做定制化配置和优化的项目,帮助用户在 Raspberry Pi 上构建一个适合自己需求的 Linux 环境。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值