【Scrapy】腾讯招聘网自动翻页采集

0 创建项目

  scrapy startproject tencent
在这里插入图片描述

1 创建一个新的爬虫

  在项目的spider文件夹下,运行cmd并执行:scrapy genspider tencent “tencent.com”
在这里插入图片描述

2 确定目标,编写items.py

在这里插入图片描述

  获取职位名称、详细信息、在这里插入图片描述

# Define here the models for your scraped items
#
# See documentation in:
# https://docs.scrapy.org/en/latest/topics/items.html
import scrapy
class TencentItem(scrapy.Item):
    positionName = scrapy.Field()
    workLocation = scrapy.Field()
    publishTime = scrapy.Field()

3 编写tengcent.py(爬虫文件)

在这里插入图片描述

import scrapy
from tencent.items import TencentItem
class TengcentSpider(scrapy.Spider):
    name = 'tengcent'
    allowed_domains = ['tencent.com']
    baseURL = 'http://hr.tencent.com/position.php?&start='
    offset=0
    start_urls=[baseURL+str(offset)]
    def parse(self, response):
        node_list=response.xpath("//a[@class='recruit-list-link']")

        for node in node_list:
            item=TencentItem()
            #extract()将节点对象转换为unicode
            positionName=node.xpath("./h4/text()").extract()[0]
            publishTime = node.xpath("./p/span[last()]/text()").extract()[0]
            workLocation = node.xpath("./p[@class='recruit-text]/text()").extract()[0]

            item['positionName']=positionName.encode('utf-8')
            item['workLocation']=workLocation.encode('utf-8')
            item['publishTime'] = publishTime.encode('utf-8')

            yield item#经过引擎传递给pipeline

        ###################翻页###################
        if self.offset<50:
            self.offset += 10
            url = self.baseURL + self.offset
            yield scrapy.Request(url,callback=self.parse())#定义请求:参数url,回调函数。经过引擎传递给调度器

4 编写pipeline并启用

在这里插入图片描述

# Define your item pipelines here
#
# Don't forget to add your pipeline to the ITEM_PIPELINES setting
# See: https://docs.scrapy.org/en/latest/topics/item-pipeline.html

# useful for handling different item types with a single interface
from itemadapter import ItemAdapter

import json
class TencentPipeline:
    def __init__(self):
        self.f=open('tencent.json','w')
    def process_item(self, item, spider):
        content=json.dumps(dict(item),ensure_ascii=False)+',\n'
        self.f.write(content)
        return item
    def close_spider(self,spider):
        self.f.close()

在这里插入图片描述

5运行爬虫

  scrapy crawl tengcent

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值