【基础必学】人工智能时代你必须知道的常用专业术语

【基础必学】人工智能时代你必须知道的常用专业术语

  • Al:Artificial Inteligence,人工智能。是研究和开发用于模拟、延伸和扩展人类智能的理论、方法、技术及应用系统的一门新技术科学。它的目标是让机器具备类似人类的智能,能够感知、理解、学习、思考、决策等。

  • AIGC:Al Generated Content,人工智能生成内容。指利用人工智能技术生成各种形式的内容,包括文本、图像、音频、视频等。例如,ChatGPT生成的文章、Midjourney生成的图片等都属于AIGC的范畴。

  • AGl:Artificial General Intelligence,通用人工智能,也称为强人工智能。它指的是一种具有广泛认知能力的AI系统,能够像人类一样在多种领域和任务中表现出智能,而不仅仅局限于特定的任务。AGI目前还处于理论和研究阶段。

  • ANl:Artificial Narrow Intelligence,人工窄智能,也称为弱人工智能。它指的是一种只能在特定任务或领域表现出智能的AI系统。例如,语音助手、图像识别软件等都属于 ANI。

  • ASl:Artificial Super Inteligence,人工超级智能,指的是一种在所有领域都超越人类智能的 A系统。它能够进行自我改进、快速学习和创新,甚至可能超越人类的理解能力。ASI目前还属于科幻和理论探讨的范畴。

  • Al Agent:人工智能代理,通常又称为“AI智能体”,是一种能够感知环境、自主理解、决策并执行动作的智能实体。它基于预设目标或任务,在给定环境中运作,通过感知环境状态、处理信息、规划行动路径并执行行动来实现其功能。AlAgent的核心能力包括自主性、反应性、主动性和社会性。

  • 具身人工智能(Embodied Al):是一种强调智能体通过物理身体与环境互动来产生智能行为的系统。它不仅依赖于计算和信息处理能力,更注重通过感知、行动和环境反馈来实现智能。具身智能的核心在于“身体”和“环境”的相互作用,认为智能的生成离不开身体的实际体验和对物理世界的操作。

  • 人形机器人:是一种仿生机器人,其外形和尺寸与人类相似,能够模仿人类的运动、表情、互动及动作,并具备一定的认知和决策智能。人形机器人是一种特殊的 Al Agent。

  • OpenAl:一家人工智能研究实验室,由埃隆·马斯克、山姆·奥特曼等人于 2015 年创立。OpenAl致力于开发和推广安全的通用人工智能技术,并开发了多个知名的人工智能模型,如GPT 系列。

  • GPT:Generative Pre-trained Transformer,生成式预训练变换器,是 OpenAl开发的一系列语言模型。GPT模型通过大规模的预训练和微调,能够生成自然语言文本,广泛应用于聊天机器人、写作辅助、翻译等领域。

  • Transformer:一种深度学习架构,由Vaswani 等人在2017年提出。Transformer架构基于自注意力机制(Self-Attention),能够高效处理序列数据(如文本)。它是现代自然语言处理(NLP)模型的基础架构,包括 GPT、BERT等都基于 Transformer 架构。

  • NLP:Natural Language Processing,自然语言处理。是人工智能的一个重要分支,旨在让计算机理解和生成人类语言。它通过模拟人类的语言理解和分析能力,实现人机交互、信息提取、语义分析等任务。

  • BERT :Bidirectional Encoder Representations fromTransformers,双向编码器表示,是一种预训练语言模型,由
    谷歌开发。BERT 通过双向上下文理解文本,广泛应用于文本分类、问答系统、命名实体识别等自然语言处理任务。

  • RAG:Retrieval-Augmented Generation,检索增强生成是一种结合检索和生成的 AI技术。它通过检索外部知识库中的信息,结合生成模型的能力,生成更准确、更有依据的文本。RAG 模型在处理需要大量背景知识的任务时表现出色。

  • LLM:Large Language Model,大语言模型。指基于大量数据进行预训练的超大型深度学习模型,可以执行各种自然语言处理(NLP)任务。大型语言模型会使用多个转换器模型,并使用海量数据集进行训练,因此规模非常庞大。GPT系列、文心一言等都属于 LLM。

  • vLLM:Very Large Language Model,是一个高性能的大型语言模型(LLM)推理引擎,专注于解决大语言模型推理过程中的性能瓶颈,提供高效、灵活且易于使用的推理解决方案。它由加州大学伯克利分校的研究团队开发,并在2023年6月开源。

  • LLaMA:Large Language Model Meta Al,是由 Meta 公司于2023年2月发布的一系列开源大型语言模型,旨在提供高效且开放的基础语言模型,推动自然语言处理(NLP)技术的发展。

  • Prompt:提示词。是用户输入给 AI模型的指令或信息,用于引导 AI系统生成特定的输出。它通常包括任务描述、上下文信息、约束条件等,以帮助模型更好地理解用户需求并生成符合预期的结果。例如,在与 ChatGPT 交互时,输入的问题或命令就是 Prompt。

  • Prompt Engineering:提示工程。指通过精心设计输入提示(Prompt)来引导 AI模型生成期望的输出。提示工程在使用
    生成式 AI时非常重要,能够提高模型的准确性和效率。

  • 机器学习(Machine Learning):人工智能的一个分支,通过让计算机从数据中学习规律和模式,从而实现自动化的任务执行。机器学习包括监督学习、无监督学习和强化学习等。

  • 强化学习(Reinforcement Learning):一种机器学习范式,通过让智能体在环境中进行试错学习,根据奖励信号来优化其行为策略。强化学习常用于机器人控制、游戏AI等领域。

  • 深度学习(Deep Learning):机器学习的一个子领域,通过构建多层神经网络来学习数据中的复杂模式。深度学习在图像识别、语音识别、自然语言处理等领域取得了巨大成功。

  • 神经网络(NeuralNetwork):一种模仿生物神经元结构的计算模型,由多个神经元(节点)和连接组成。神经网络能够通
    过学习数据中的模式来进行分类、预测等任务,是深度学习的基础。

  • 卷积神经网络(Convolutional Neural Network,CNN):是一种深度学习架构,广泛应用于图像识别、视频分析、自然语言处理等领域,尤其在计算机视觉任务中表现出色。CNN 通过模拟人类视觉系统的层次化结构,能够自动提取数据中的特征,从而实现高效的模式识别和分类。卷积(Convolution):是一种数学运算,广泛应用于信号处理、图像处理和深度学习等领域。

  • Transformer:一种神经网络架构,在自然语言处理中非常流行和成功。Transformer的核心是它的注意力机制,这个机制使得模型能够聚焦于输入文本的重要部分,类似于人类在阅读或听取信息时会关注某些关键词或短语。

  • 模型参数:模型的参数是模型的调整点,它们决定了模型如何从输入数据中学习并做出预测。大模型通常拥有大量的参数,参数的数量通常与模型的复杂性和容量成正比,意味着更多的参数可能带来更强的学习能力。

  • Token:大模型中的Token是指在自然语言处理(NLP)领域中,模型处理文本时的基本单元。Token可以是单个词汇、子词(subword)、字符、标点符号或者是任何具有意义的文本片段。在模型输入阶段,原始文本首先经过分词或Token化处理,将其分解成一系列离散的Token,目前的大模型一般也是按Token进行收费。

  • 模型泛化:模型泛化是指在机器学习尤其是深度学习领域中,大型神经网络模型经过训练后,不仅能在训练数据上表现出色,还能在之前未见过的新数据上保持良好性能的能力。模型泛化可以引申出两个概念:欠拟合和过拟合。欠拟合简单来说就是在训练数据表现不好,然后在未见过的新数据同样表现不好;而过拟合简单来说就是在训练数据表现不错,但是在未见过的新数据表现欠佳。

  • 指令微调:针对已经存在的预训练模型,给出额外的指令或者标准数据集来提升模型的性能。典型例子就是新开源的Llama3大模型只用了5%左右的非英语训练集,这就导致了它在中文的表现上不是很优秀,所以一般都会用一些中文语料对它进行一个微调,提升它在中文回答上的表现。

  • 幻觉问题:简单来说就是大模型在“胡说八道”,模型生成的内容与现实世界事实不一致,可以通过上述的RAG技术进行优化.

  • 量化:大模型的量化是指将深度学习模型中的参数(如权重和偏置)从浮点数转换为低精度的表示形式,例如整数或二值化表示,比如一个7B的模型用32位浮点数存储,那么使用该模型需要28GB的内存容量,但是通过4位量化,使用该模型仅需要3.5GB,所以量化可以显著藏少模型的内存占用,你也可以简单理解为将模型压缩。

  • 多模态:多模态可以通过一个阕子说明,想象一下,我们在于他人交流时不仅通过语言(说话或文字),还会通过表情、手势、图像、声音等多种方式进行互动,这就是现实生活中的“多模志沟通。在技术层面,多模态则是指计算机系统能够同时理解和处理多种不同形式的数察输入,比如一个大模型能够同时理解和处理不同形式的数据输入。

  • LORA:LORA全称"Low-Rank Adaptation”(低秩适应),这是微软的研究人员为了解决大语言模型微调而开发的一项技术,目的是在保持大模型高性能的同时,降低微调过程中的计算资源需求和内存消耗。LORA的工作机制是在大模型(如GPT系列或LLM等)的Transformer架构中引入低秩分解矩阵,而不是对整个模型的所有参数进行微调(因为直接对GPT-3做微调,成本太高太麻烦)

  • Langchain:LangChain是一个用于构建和集成大型语言模型(LLM)到应用程序中的开源开发框架。它致力于简化使用LLM进行应用程序开发的过程,通过提供一系列工具和组件来促进LLM与其他功能模块的有效协作,从而构建出具有上下文感知、推理能力以及与外部工具交互能力的高级应用程序。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

山风wind

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值