初识AI大模型之AI大模型常见名词介绍

1.1.1 AI 人工智能

AI,人工智能(Artificial Intelligence),是使计算机或机器能够执行通常需要人类智能的任务的能力。这些任务包括学习、推理、问题解决、感知、理解语言和适应新情况等。AI的应用范围广泛,从简单的任务自动化到复杂的决策支持系统,影响到多个领域,如医疗、金融、自动驾驶、自主机器人等。

智能的构成:

  • 学习:从数据中获取知识或技能,通常涉及机器学习算法。

  • 推理:基于已知信息得出新结论,通过逻辑推理或规则推导。

  • 感知:利用传感器获取环境信息,如计算机视觉(图像识别)和自然语言处理(语音识别)。

  • 行为:根据学习和推理的结果做出决策并执行动作。

1.1.2 LM 大模型

LM,大模型(Large Models),通常用来描述那些具有大量参数的机器学习模型。这些模型可以是任何类型的模型,包括但不限于深度学习模型、神经网络、卷积神经网络(CNN)、循环神经网络(RNN)等。大模型因为参数众多,拥有数十亿甚至数千亿个参数。这些模型通过训练海量数据,能够捕捉到数据中的复杂模式和特征,展现出强大的泛化能力。

大模型工作原理:

主要基于深度学习技术,特别是神经网络和Transformer架构。其核心思想是通过大规模数据训练,使模型能够捕捉数据中的复杂模式和规律,并在新任务中进行高效预测和决策。

1、大模型的数据收集与预处理,这是构建高性能模型的关键步骤。

  • 数据收集:是大模型训练的基础,其目标是获取足够数量和质量的数据集。通常包括明确数据需求、选择数据源、数据抓取与下载、数据存储。

  • 数据预处理:包括数据清洗(去除重复、缺失、异常值)、数据格式化、归一化/标准化、特征选择与提取、数据划分。

2、大模型训练过程

  • 数据准备:收集和预处理数据,确保质量和多样性。

  • 模型设计:选择合适的神经网络架构,初始化参数。

  • 训练过程:采用分布式并行训练,使用反向传播和优化器更新参数,定期评估和调试模型。

  • 超参数调优:手动设置超参数,如学习率、批量大小等,以找到最佳模型配置。

  • 模型部署和应用:将训练好的模型部署到实际应用中,使用容器化技术(如Docker)和模型服务框架(TensorFlow Serving、PyTorch Serve等)来扩展模型的性能和可用性。监控已部署的模型性能,并根据需要进行重新训练或调整。

  • 持续学习和优化:持续关注最新的研究成果或技术动态,以优化和改进现有模型。通过实验和验证来评估新方法和技术的有效性,并将其应用到实际模型中。

3、模型评估与调优:

  • 模型评估:使用合适的评估指标,如准确率、召回率等,对模型进行量化评估。

  • 模型调优:通过超参数调优、模型结构调整、数据增强、特征工程等方法提高模型性能。

4、大模型部署与应用:

  • 模型选择与准备:根据应用场景选择模型,准备数据。

  • 模型训练与优化:采用分布式训练和模型优化技术。模型部署:选择合适的部署框架,配置环境,集成模型。

  • 模型测试与评估:进行性能和稳定性测试,根据结果进行优化调整。

1.1.3 LLM 大模型

LLM,人工智能大模型(Large Language Model)是一种通过学习和推理能够执行任务的计算机程序或系统,特指拥有超大规模参数(通常在十亿个以上)、复杂计算结构的机器学习模型,能够处理海量数据,完成各种复杂任务,如自然语言处理、图像识别等。

AI大模型三大特征:

  • 泛化性: 模型能够从训练数据中学习到的一般规律和特征,并将其应用到新的、未见过的数据上,是衡量模型性能的重要指标之一。

  • 通用性: AI大模型经过大量多样化数据的训练能够适应多种不同的任务和场景,如语言翻译、情感分析、图像识别等。

  • 涌现性: 模型通过大量数据训练后,展现出一些在训练数据中没有明确指示的能力或行为。

1.1.4 MLLMs 多模态大模型

MLLMs,多模态大模型(Multimodal Large Language Models),也称多模态大语言模型。多模态大模型处理的数据不仅包含文本,还包括图片、视频、音频等。

多模态大模型工作原理:

1、数据预处理与特征提取

  • 模态特定预处理:对不同模态的数据进行特定的预处理操作。如对于图像,可能进行裁剪、缩放、归一化等操作;对于文本,进行分词、词嵌入等处理;对于音频,进行采样、降噪等。

  • 特征提取:使用专门的神经网络结构或算法从预处理后的数据中提取特征。例如,利用卷积神经网络(CNN)提取图像的视觉特征,得到图像的特征向量;通过循环神经网络(RNN)或 Transformer 对文本进行编码,生成文本的特征表示;利用梅尔频率倒谱系数(MFCC)等方法提取音频的特征。

2、模态表示学习

  • 将不同模态数据映射到统一向量空间:将各个模态提取到的特征进一步转化为能够被模型处理的向量表示,使得不同模态的数据能够在一个统一的向量空间中进行表示和计算。如文本经过语言模型编码,变成词向量;图像通过卷积神经网络处理,变成像素向量。

3、模态融合

  • 自注意力机制融合:利用自注意力机制等方法,对不同模态的特征向量进行融合和对齐,学习它们之间的关联关系,让模型能够自动地关注不同模态之间的相互关联和重要信息,从而实现跨模态的信息交互和整合。例如,在生成图像描述时,模型会将图像特征和文本特征进行融合,以生成准确的描述;在视频理解中,将视频帧的图像特征与音频特征融合,以理解视频内容。

  • 其他融合方法:除了自注意力机制外,还可以采用其他融合策略,如简单拼接、加权求和、门控机制等,根据具体的任务和模型结构选择合适的融合方式,以充分利用不同模态的信息。

4、模型训练与优化

  • 多模态预训练:通常在大规模的多模态数据上进行预训练,使模型学习到不同模态之间的通用特征和关联模式,预训练可以帮助模型在后续的特定任务中更快地收敛和取得更好的性能。如使用大规模的图像 - 文本对、视频 - 文本对等数据进行预训练。

  • 微调与优化:在预训练的基础上,针对具体的下游任务,如多模态情感分析、视频内容理解、图像生成等,使用相应的任务特定数据对模型进行微调,进一步优化模型的参数,以适应特定任务的需求。在训练过程中,使用反向传播算法计算损失函数对模型参数的梯度,并通过优化器如 Adam、SGD 等更新参数,最小化损失函数。

5、推理与生成

  • 多模态理解任务:在推理阶段,模型接收多种模态的输入数据,经过上述的处理和融合步骤后,对输入进行理解和分析,输出对多模态数据的理解结果,如对图像内容的文本描述、视频中的动作识别结果、多模态情感分类等。

  • 多模态生成任务:模型根据给定的一种或多种模态的输入,生成其他模态的输出,如根据一段文字生成对应的图像、根据图像生成相应的文字故事、根据音频生成视频等。在生成过程中,模型基于已学习到的模态间的关联和知识,逐步生成目标模态的数据。

1.1.5 AGI 人工通用智能

AGI,人工通用智能(Artificial General Intelligence),是指一种能够像人类一样思考、学习和执行多种任务的人工智能系统。它被称为“强AI”,具备相当于人类智慧程度的能力,可以解决广泛的问题并进行多种任务。AGI的目标是创建一个全面智能的系统,能够在不同的环境中适应和学习,并从不同来源获取信息,进行推理和决策。

OpenAI 在其内部会议上分享了 AGI 的五个发展等级:

  • 聊天机器人(Chatbots):具备基本对话能力,主要依赖预设脚本和关键词匹配,用于客户服务和简单查询响应。

  • 推理者(Reasoners):具备人类推理水平,能够解决复杂问题,如 ChatGPT,能根据上下文和文件提供详细分析和意见。

  • 智能体(Agents):不仅具备推理能力,还能执行全自动化业务,但目前许多 AI Agent 产品在执行任务后仍需人类参与,尚未达到完全智能体的水平。

  • 创新者(Innovators):能够协助人类完成新发明,如谷歌 DeepMind 的 AlphaFold 模型,可预测蛋白质结构,加速科学研究和新药发现。

  • 组织(Organizations):最高级别的 AI,能够自动执行组织的全部业务流程,如规划、执行、反馈、迭代、资源分配和管理等。

1.1.6 AIGC 人工智能内容生成

AIGC,人工智能内容生成(Al Generated content)是指由人工智能自动创作生成的内容,它接收人类下达的任务指令,凭借AI的理解能力、想象力和创作能力的加持,它能够根据指定的需求创作出各种内容,例如文章、短篇小说、报告、音乐、图像甚至是视频。

AIGC的出现开启了一个全新的创作世界,为人们带来了无尽的可能性。从用户生成内容(UGC)到专业生成内容(PGC),再到现在的人工智能生成内容(AIGC),我们见证了内容创作方式的巨大变革和进步。

1.1.7 RAG 检索增强生成

RAG,检索增强生成(Retrieval-Augmented Generation)是一种结合信息检索和生成式人工智能的技术,旨在通过从外部知识库中提取信息来辅助生成模型生成更准确、相关和定制化的答案。RAG技术的核心思想是利用外部知识库来增强大语言模型(LLM)的输出质量,从而解决大模型在知识过时、推理不透明等问题上的局限性。

RAG的工作流程通常包括以下几个步骤:

  1. 用户提问:用户提出问题。

  2. 数据检索:系统从外部知识库中检索与问题相关的信息。

  3. 信息融合:将检索到的信息与用户的问题结合。

  4. 生成答案:使用生成模型(如LLM)根据融合后的信息生成回答

1.1.8 Prompt 提示词和提示工程 PE

1、Prompt,提示词

是指直接输入到AI模型中的问题、请求或指示,用于引导模型生成特定类型的输出或执行特定的任务。提示词可以非常简单,如“给我总结这篇文章的主要观点”,也可以更复杂,包含多个步骤和条件的复杂任务。

2、Prompt Engineering,提示工程

是一个更广泛的概念,涉及设计、优化和调整提示词以获得期望的输出。提示工程不仅包括创建有效的提示词,还涉及对模型行为的理解、优化提示词以提高性能,以及创造性地探索模型的潜在应用。提示工程的目标是最大化AI模型的效用和性能,而提示词是实现这一目标的手段之一。

在实际应用中,提示工程可能包括以下几个方面:

  • 设计和优化提示词:通过精心设计的提示词,使模型能够更好地理解用户意图并生成符合期望的答案或内容。

  • 参数调整:调整模型设置,如温度(temperature)、top_p、max_length等,以控制回答的确定性和多样性。

  • 实验与优化:通过多次尝试和调整提示词,找到最佳的提示方式以提高模型的输出质量。

  • 少样本学习和零样本学习:利用少量示例或完全不依赖示例来引导模型完成任务

1.1.9 Token

Token是自然语言处理(NLP)和机器学习只中的基本单元,它代表文本中的一个有意义的片段,如单词、短语或子词。在大型语言模型(LLM)中,Token是模型理解和生成文本的基础。Token的定义和使用依赖于模型架构和处理语言的特性。

在自然语言处理(NLP)的世界里,"token"是最基本的单位。就像拼图游戏中的每块拼图,每个单词都是一个token。比如,“Ilove you"这句话,就可以被拆分成"I”、"love"和"you"这三个token。

扩展

Token在计算机科学和网络安全中通常指一种用于身份验证和授权的令牌。它是由服务器生成的一串字符串,用于客户端在后续请求中标识身份和权限。Token的使用可以简化身份验证流程,避免重复输入用户名和密码,并提高系统的安全性和稳定性。

在区块链技术中,Token是一种数字资产,代表特定的价值或权益,如货币、股票、积分等。它们基于区块链技术发行和管理,通过智能合约定义规则和功能。Token的用途广泛,包括作为支付工具、资产权益证明、访问权限等

1.1.10 AI Agent 人工智能体

AI Agent(人工智能体)是一种能够感知环境、进行决策和执行动作的智能实体。不同于传统的人工智能,AI Agent具备通过独立思考、调用工具去逐步完成给定目标的能力。

AI Agent和大模型的区别在于,大模型与人类之间的交互是基于prompt实现的,用户prompt是否清晰明确会影响大模型回答的效果。而AI Agent的工作仅需给定一个目标,它就能够针对目标独立思考并做出行动。

1.1.11 Turing Test 图灵测试

图灵测试(Turing Test)是由英国数学家和逻辑学家艾伦·图灵(Alan Turing)在1950年提出的一个思想实验,旨在评估机器是否能够展现出与人类不可区分的智能行为。图灵测试是人工智能领域中一个重要的概念,它挑战了机器模拟人类智能的能力。

图灵测试的基本原理:

  • 测试设置:测试中有三个参与者:一个人类评判员、一个人类(通常称为“对照组”)和一个机器(人工智能)。

  • 隔离环境:评判员与另外两个参与者隔离,不能直接看到或听到他们。

  • 交流方式:评判员通过文本方式与另外两个参与者交流,可以是任何问题或话题。

  • 测试目的:评判员的任务是判断哪个参与者是人类,哪个是机器。如果评判员不能一致地判断出哪个是机器,那么机器就通过了图灵测试。

  • 通过标准:如果机器能够“欺骗”评判员,使其无法确定哪个是机器,那么机器就被认为是具有人类智能的。

零基础如何学习AI大模型

领取方式在文末

为什么要学习大模型?

学习大模型课程的重要性在于它能够极大地促进个人在人工智能领域的专业发展。大模型技术,如自然语言处理和图像识别,正在推动着人工智能的新发展阶段。通过学习大模型课程,可以掌握设计和实现基于大模型的应用系统所需的基本原理和技术,从而提升自己在数据处理、分析和决策制定方面的能力。此外,大模型技术在多个行业中的应用日益增加,掌握这一技术将有助于提高就业竞争力,并为未来的创新创业提供坚实的基础。

大模型典型应用场景

AI+教育:智能教学助手和自动评分系统使个性化教育成为可能。通过AI分析学生的学习数据,提供量身定制的学习方案,提高学习效果。
AI+医疗:智能诊断系统和个性化医疗方案让医疗服务更加精准高效。AI可以分析医学影像,辅助医生进行早期诊断,同时根据患者数据制定个性化治疗方案。
AI+金融:智能投顾和风险管理系统帮助投资者做出更明智的决策,并实时监控金融市场,识别潜在风险。
AI+制造:智能制造和自动化工厂提高了生产效率和质量。通过AI技术,工厂可以实现设备预测性维护,减少停机时间。

这些案例表明,学习大模型课程不仅能够提升个人技能,还能为企业带来实际效益,推动行业创新发展。

学习资料领取

如果你对大模型感兴趣,可以看看我整合并且整理成了一份AI大模型资料包,需要的小伙伴文末免费领取哦,无偿分享!!!
vx扫描下方二维码即可
加上后会一个个给大家发

在这里插入图片描述

部分资料展示

一、 AI大模型学习路线图

整个学习分为7个阶段
在这里插入图片描述
请添加图片描述

二、AI大模型实战案例

涵盖AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,皆可用。
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

三、视频和书籍PDF合集

从入门到进阶这里都有,跟着老师学习事半功倍。
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

四、LLM面试题

在这里插入图片描述
在这里插入图片描述

五、AI产品经理面试题

在这里插入图片描述

😝朋友们如果有需要的话,可以V扫描下方二维码联系领取~
在这里插入图片描述

👉[CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)]👈

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值