Python+pandas实现简单聚类分析

Python+pandas实现简单聚类分析

  • 应用百度百科对聚类分析的解释:
    聚类分析指将物理或抽象对象的集合分组为由类似的对象组成的多个类的分析过程。它是一种重要的人类行为。
    聚类分析的目标就是在相似的基础上收集数据来分类。聚类源于很多领域,包括数学,计算机科学,统计学,生物学和经济学。在不同的应用领域,很多聚类技术都得到了发展,这些技术方法被用作描述数据,衡量不同数据源间的相似性,以及把数据源分类到不同的簇中。

  • 待分析数据如下(CSV文件):

客户年龄,平均每次消费金额,平均消费周期(天)
23,317,10
22,147,13
24,172,17
27,194,67
37,789,35
25,190,1
29,281,10
27,142,12
28,186,8
23,226,1
22,287,32
32,499,3
25,181,90
26,172,1
24,190,16
27,271,31
40,382,25

  • 目标要求:
    通过客户的信息为客户分类,确定 哪些用户为有价值用户

开始动手:

import pandas as pd

data = pd.read_csv('company.csv', sep=',', encoding='gbk')
x = data[['平均消费周期(天)', '平均每次消费金额']].as_matrix()
# 导入聚类分析工具KMeans
from sklearn.cluster import KMeans
# 传入要分类的数目
kms = KMeans(n_clusters=3)
y = kms.fit_predict(x)
print(y)

Python就是这么简单。觉得Python数据分析很简单?
并不是,这个聚类分析的算法是内置的,可能并不能很好的适应我们的使用需求。
所以,想用Python做数据分析还得靠我们自己动手多写代码。

  • 8
    点赞
  • 61
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

安心写bug

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值