4-1 Python学习笔记1_向量、矩阵及数组定义

4-1 Python学习笔记1_向量、矩阵及数组定义

1.学习环境

python安装:网络上都有相应的安装教程,安装完之后打开cmd命令查看python版本(直接输入python即可),我的是3.7.3
图1 python版本
安装完后需要一个编译器,可以选择IDE等,本文用的是VS Code

在这里插入图片描述
打开后工具栏新建文件夹,再新建python文件即可编写python程序

设备准备充分后,还需要下载numpy包。
numpy安装办法参考https://numpy.org/(用pip install numpy 或者coda install numpy。pip相关信息具体参考https://pypi.org/project/pip/).

2.向量、矩阵、数组的创建

1.创建向量

import numpy as np
vector_row=np.array([1,2,3]) #创建行向量
vector_column=np.array([[1],[2],[3]])#创建列向量

输出结果(用print函数输出vector_row,vector_column):
在这里插入图片描述
在这里插入图片描述
2. 创建矩阵

matrix_object=np.mat([1,2],[1,2],[1,2])

输出结果
在这里插入图片描述
3.其他操作
知道了向量与矩阵的操作后,剩余操作与MATLAB同理:

  • 稀疏矩阵:sparse.csr_matrix()
  • 选择矩阵的元素、行、列:与MATLAB同 [要选择的位置]
  • 矩阵的维数、元素个数:shape、size
  • 矩阵的维数:np.ndim
  • 最大最小值,均值,方差,标准差:np.(max,min,mean,var,std)其中对行操作axis=0,列axis=1.
  • 重排:reshape(注:按行重排)
  • 转置: .T
  • 拉直(重排成一行):.flatten() or reshape(1,-1)
  • 矩阵的秩:np.linalg.matix_rank()
  • 矩阵的行列式:np.linalg.det()
  • 矩阵的迹:.trace()
  • 矩阵的特征值与特征向量:eigenvalues,eigenvetors=np.linalg.eig(matrix) 注:只能处理方阵
  • 向量内积:.dot or @
  • 矩阵加减:add(A,B),subtract(A,B) or +,-
  • 矩阵乘积:dot,@, or *
  • 矩阵的逆:inv
  • 生成范围内的行向量:np.random.randint(low,up,dim)
    部分代码:
import numpy as np
from scipy import sparse
vector_row=np.array([1,2,3]) #创建行向量
vector_column=np.array([[1],[2],[3]])#创建列向量
matrix_object=np.mat([[1,-1,3],[1,1,6],[3,8,9]])#创建3行2列矩阵
matrix=np.mat([[0,0],[0,2],[1,0]])#创建3行2列稀疏矩阵
matrix_sparse=sparse.csr_matrix(matrix)
#matrix_object.reshape(1,-1)
a=np.linalg.matrix_rank(matrix_object)
eigenvalues,eigenvetors=np.linalg.eig(matrix_object)
matrix_object1=np.mat([[1,-1,3],[1,1,6],[3,8,9]])
#print(matrix_object*matrix_object1)
a1=np.random.randint(-1,1,3)
print(a1)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值