异常检测——基于统计学的方法

本文介绍了异常检测的统计学方法,包括参数方法和非参数方法。参数方法如基于正态分布的一元和多元异常检测,利用3σ原则和箱线图设定阈值。非参数方法如直方图检测,通过构建直方图识别异常点。此外,还探讨了基于角度的方法和HBOS算法,HBOS快速且适用于大数据集,但无法检测局部异常。
摘要由CSDN通过智能技术生成

异常检测——基于统计学的方法

1、概述

统计模型是对数据的正常性做出假设,不遵守该模型的数据都是异常点。 高度依赖模型假设

**异常检测的统计学方法的一般思想:**学习一个拟合给定数据集的生成模型,然后识别该模型低概率区域中的对象,把它们作为异常点。

根据如何指定和学习模型,异常检测的统计学方法可以划分为两个主要类型: 参数方法非参数方法

参数方法假定正常的数据对象被一个以 Θ \Theta Θ为参数的参数分布产生。该参数分布的概率密度函数 f ( x , Θ ) f(x, \Theta) f(x,Θ)给出对象 x x x被该分布产生的概率。该值越小, x x x越可能是异常点。

非参数方法并不假定先验统计模型,而是试图从输入数据确定模型。非参数方法通常假定参数的个数和性质都是灵活的,不预先确定(所以非参数方法并不是说模型是完全无参的,完全无参的情况下从数据学习模型是不可能的)。

2、参数方法

2.1、基于正态分布的一元异常点检测

一元数据: 仅涉及一个属性或变量的数据

基于正态分布的一元异常点检测: 我们假定数据由正态分布产生,然后可以由输入数据学习正态分布的参数,并把低概率的点识别为异常点。

第一步:假定输入数据集为 { x ( 1 ) , x ( 2 ) , . . . , x ( m ) } \{x^{(1)}, x^{(2)}, ..., x^{(m)}\} {x(1),x(2),...,x(m)},数据集中的样本服从正态分布,即 x ( i ) ∼ N ( μ , σ 2 ) x^{(i)}\sim N(\mu, \sigma^2) x(i)N(μ,σ2),我们可以根据样本求出参数 μ \mu μ σ \sigma σ

μ = 1 m ∑ i = 1 m x ( i ) \mu=\frac 1m\sum_{i=1}^m x^{(i)} μ=m1i=1mx(i)

σ 2 = 1 m ∑ i = 1 m ( x ( i ) − μ ) 2 \sigma^2=\frac 1m\sum_{i=1}^m (x^{(i)}-\mu)^2 σ2=m1i=1m(x(i)μ)2

第二步:求出参数之后,我们就可以根据概率密度函数计算数据点服从该分布的概率。正态分布的概率密度函数为:

p ( x ) = 1 2 π σ e x p ( − ( x − μ ) 2 2 σ 2 ) p(x)=\frac 1{\sqrt{2\pi}\sigma}exp(-\frac{(x-\mu)^2}{2\sigma^2}) p(x)=2π σ1exp(2σ2(xμ)2)

第三步:如果计算出来的概率低于 阈值 ,就可以认为该数据点为异常点。

阈值是个经验值,可以选择在验证集上使得评估指标值最大(也就是效果最好)的阈值取值作为最终阈值。

阈值选择:
3sigma原则中,如果数据点超过范围 ( μ − 3 σ , μ + 3 σ ) (\mu-3\sigma, \mu+3\sigma) (μ3σ,μ+3σ),那么这些点很有可能是异常点。

箱线图:箱线图对数据分布做了一个简单的统计可视化,利用数据集的上下四分位数(Q1和Q3)、中点等形成。异常点常被定义为小于Q1-1.5IQR或大于Q3+1.5IQR的那些数据。

参考代码:

import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt

plt.rcParams['font.sans-serif'] = ['SimHei'] #用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False #用来正常显示负号

data = np.random.randn(50000) * 20 + 20
sns.boxplot(data=data)

2.2 多元异常点检测

涉及两个或多个属性或变量的多元数据,其核心思想是把多元异常点检测任务转换成一元异常点检测问题。例如基于正态分布的一元异常点检测扩充到多元情形时,可以求出每一维度的均值和标准差。对于第 j j j

μ j = 1 m ∑ i = 1 m x j ( i ) \mu_j=\frac 1m\sum_{i=1}^m x_j^{(i)} μj=m1i=1mxj(i)

σ j 2 = 1 m ∑ i = 1 m ( x j ( i ) − μ j ) 2 \sigma_j^2=\frac 1m\sum_{i=1}^m (x_j^{(i)}-\mu_j)^2 σj2=m1i=1m(xj(i)μj)2

计算概率时的概率密度函数为

p ( x ) = ∏ j = 1 n p ( x j ; μ j , σ j 2 ) = ∏ j = 1 n 1 2 π σ j e x p ( − ( x j − μ j ) 2 2 σ j 2 ) p(x)=\prod_{j=1}^n p(x_j; \mu_j, \sigma_j^2)=\prod_{j=1}^n\frac 1{\sqrt{2\pi}\sigma_j}exp(-\frac{(x_j-\mu_j)^2}{2\sigma_j^2}) p(x)=j=1np(xj;μj,σj2)=j=1n2π σj1exp(2σj2(xjμj)2)

这是在各个维度的特征之间 相互独立 的情况下。如果特征之间有相关性,就要用到 多元高斯分布 了。

2.3 多元高斯分布

μ = 1 m ∑ i = 1 m x ( i ) \mu=\frac{1}{m}\sum^m_{i=1}x^{(i)} μ=m1i=1mx(i)

∑ = 1 m ∑ i = 1 m ( x ( i ) − μ ) ( x ( i ) − μ ) T \sum=\frac{1}{m}\sum^m_{i=1}(x^{(i)}-\mu)(x^{(i)}-\mu)^T =m1i=1m(x(i)μ)(x(i)μ)T

p ( x ) = 1 ( 2 π ) n 2 ∣ Σ ∣ 1 2 exp ⁡ ( − 1 2 ( x − μ ) T Σ − 1 ( x − μ ) ) p(x)=\frac{1}{(2 \pi)^{\frac{n}{2}}|\Sigma|^{\frac{1}{2}}} \exp \left(-\frac{1}{2}(x-\mu)^{T} \Sigma^{-1}(x-\mu)\right) p(x)=(2π)2nΣ211exp(21(xμ)TΣ1(xμ))

ps: 当多元高斯分布模型的协方差矩阵 ∑ \sum 为对角矩阵,且对角线上的元素为各自一元高斯分布模型的方差时,二者是等价的。

2.4 混合参数分布

在许多情况下假定数据是由正态分布产生的。当实际数据很复杂时,这种假定过于简单,可以假定数据是被混合参数分布产生的。

3、非参数法

在异常检测的非参数方法中,“正常数据”的模型从输入数据学习,而不是假定一个先验。通常,非参数方法对数据做较少假定,因而在更多情况下都可以使用。

例子:使用直方图检测异常点

步骤1:构造直方图。使用输入数据(训练数据)构造一个直方图。该直方图可以是一元的,或者多元的(如果输入数据是多维的)。

尽管非参数方法并不假定任何先验统计模型,但是通常确实要求用户提供参数,以便由数据学习。例如,用户必须指定直方图的类型(等宽的或等深的)和其他参数(直方图中的箱数或每个箱的大小等)。与参数方法不同,这些参数并不指定数据分布的类型。

步骤2:检测异常点。为了确定一个对象是否是异常点,可以对照直方图检查它。在最简单的方法中,如果该对象落入直方图的一个箱中,则该对象被看作正常的,否则被认为是异常点。

对于更复杂的方法,可以使用直方图赋予每个对象一个异常点得分。例如令对象的异常点得分为该对象落入的箱的容积的倒数。

使用直方图作为异常点检测的非参数模型的一个缺点是,很难选择一个合适的箱尺寸。

  • 一方面,如果箱尺寸太小,则许多正常对象都会落入空的或稀疏的箱中,因而被误识别为异常点
  • 另一方面,如果箱尺寸太大,则异常点对象可能渗入某些频繁的箱中,因而“假扮”成正常的。

4、基于角度的方法

主要思想:数据边界上的数据很可能将整个数据包围在一个较小的角度内,而内部的数据点则可能以不同的角度围绕着他们。如下图所示,其中点A是一个异常点,点B位于数据内部。

如果数据点与其余点离得较远,则潜在角度可能越小。因此,具有较小角度谱的数据点是异常值,而具有较大角度谱的数据点不是异常值。

考虑三个点X, Y, Z。如果对于任意不同的点Y, Z,有:

W Cos ⁡ ( X Y → , X Z → ) = ⟨ X Y ‾ , X Z ⟩ ∥ X Y ∥ ∥ X Z ∥ W \operatorname{Cos}(\overrightarrow{X Y}, \overrightarrow{X Z})=\frac{\langle\overline{X Y}, X Z\rangle}{\|X Y\|\|X Z\|} WCos(XY ,XZ )=XYXZXY,XZ
其中 ∣ ∣   ∣ ∣ ||\space||  代表L2范数 , $< · > $代表点积。

这是一个加权余弦,因为分母包含L2-范数,其通过距离的逆加权进一步减小了异常点的加权角,这也对角谱产生了影响。然后,通过改变数据点Y和Z,保持X的值不变计算所有角度的方法。相应地,数据点X的基于角度的异常分数(ABOF)∈ D为:

A B O F ( X ) = Var ⁡ { Y , Z ∈ D } W Cos ⁡ ( X Y → , X Z → ) A B O F(X)=\operatorname{Var}_{\{Y, Z \in D\}} W \operatorname{Cos}(\overrightarrow{X Y}, \overrightarrow{X Z}) ABOF(X)=Var{Y,ZD}WCos(XY ,XZ )

5、HBOS

HBOS全名为:Histogram-based Outlier Score 。基于直方图的异常值得分。它是一种单变量方法的组合,不能对特征之间的依赖关系进行建模,但是计算速度较快,对大数据集友好。其基本假设是数据集的每个维度相互独立。然后对每个维度进行区间(bin)划分,区间的密度越高,异常评分越低。

HBOS算法流程:

  1. 为每个数据维度做出数据直方图。对分类数据统计每个值的频数并计算相对频率。对数值数据根据分布的不同采用以下两种方法:
  • 静态宽度直方图:标准的直方图构建方法,在值范围内使用k个等宽箱。样本落入每个桶的频率(相对数量)作为密度(箱子高度)的估计。时间复杂度: O ( n ) O(n) O(n)

    1. 动态宽度直方图:首先对所有值进行排序,然后固定数量的 N k \frac{N}{k} kN个连续值装进一个箱里,其中N是总实例数,k是箱个数;直方图中的箱面积表示实例数。因为箱的宽度是由箱中第一个值和最后一个值决定的,所有箱的面积都一样,因此每一个箱的高度都是可计算的。这意味着跨度大的箱的高度低,即密度小,只有一种情况例外,超过k个数相等,此时允许在同一个箱里超过 N k \frac{N}{k} kN值。

    时间复杂度: O ( n × l o g ( n ) ) O(n\times log(n)) O(n×log(n))

  1. 对每个维度都计算了一个独立的直方图,其中每个箱子的高度表示密度的估计。然后为了使得最大高度为1(确保了每个特征与异常值得分的权重相等),对直方图进行归一化处理。最后,每一个实例的HBOS值由以下公式计算:

H B O S ( p ) = ∑ i = 0 d log ⁡ ( 1 hist i ( p ) ) H B O S(p)=\sum_{i=0}^{d} \log \left(\frac{1}{\text {hist}_{i}(p)}\right) HBOS(p)=i=0dlog(histi(p)1)

推导过程

假设样本pi 个特征的概率密度为 p i ( p ) p_i(p) pi(p) ,则p的概率密度可以计算为:
P ( p ) = P 1 ( p ) P 2 ( p ) ⋯ P d ( p ) P(p)=P_{1}(p) P_{2}(p) \cdots P_{d}(p) P(p)=P1(p)P2(p)Pd(p)
两边取对数:
log ⁡ ( P ( p ) ) = log ⁡ ( P 1 ( p ) P 2 ( p ) ⋯ P d ( p ) ) = ∑ i = 1 d log ⁡ ( P i ( p ) ) \begin{aligned} \log (P(p)) &=\log \left(P_{1}(p) P_{2}(p) \cdots P_{d}(p)\right) =\sum_{i=1}^{d} \log \left(P_{i}(p)\right) \end{aligned} log(P(p))=log(P1(p)P2(p)Pd(p))=i=1dlog(Pi(p))
概率密度越大,异常评分越小,为了方便评分,两边乘以“-1”:
− log ⁡ ( P ( p ) ) = − 1 ∑ i = 1 d log ⁡ ( P t ( p ) ) = ∑ i = 1 d 1 log ⁡ ( P i ( p ) ) -\log (P(p))=-1 \sum_{i=1}^{d} \log \left(P_{t}(p)\right)=\sum_{i=1}^{d} \frac{1}{\log \left(P_{i}(p)\right)} log(P(p))=1i=1dlog(Pt(p))=i=1dlog(Pi(p))1
最后可得:
H B O S ( p ) = − log ⁡ ( P ( p ) ) = ∑ i = 1 d 1 log ⁡ ( P i ( p ) ) H B O S(p)=-\log (P(p))=\sum_{i=1}^{d} \frac{1}{\log \left(P_{i}(p)\right)} HBOS(p)=log(P(p))=i=1dlog(Pi(p))1

总结

  1. 异常检测的统计学方法由数据学习模型,以区别正常的数据对象和异常点。使用统计学方法的一个优点是,异常检测可以是统计上无可非议的。当然,仅当对数据所做的统计假定满足实际约束时才为真。

  2. HBOS在全局异常检测问题上表现良好,但不能检测局部异常值。但是HBOS比标准算法快得多,尤其是在大数据集上。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值