量纲分析

举例

美国原子弹爆炸图

Taylor利用量纲分析法,计算出爆炸形成的冲击波半径R与时间t^{2/5}有关

释放的能量E、冲击波半径R、空气密度ρ、空气绝热系数γ(无量纲数)、时间t,R = E^{x_1} \rho ^ {x_2} t ^ {x_3} \gamma ^ {x_4},用量纲分析求出未知指数,x1=1/5,x2=-1/5,x3=2/5。


根据某次原子弹爆炸的照片数据,计算出原子弹的能量。
泰勒得出在一些小型爆炸中\gamma ^ {x_4} \approx 1
密度取1.25 kg/m^3
训练数据R,t已知
则根据公式R = E^{x_1} \rho ^ {x_2} t ^ {x_3} \gamma ^ {x_4},可以计算出E

Von Neumann 冯诺依曼

基本量纲与导出量纲

F = m * a
F 单位 N 基本量纲 M*L/T^2
m 单位 kg 基本量纲 M
a 单位 m/s^2 基本量纲 L/T^2

无量纲量与无量纲单位

无量纲量是个没有单位的数字,量纲为1。1 m/s与1,前者纲量为L/T,后者量纲为1

无量纲量:圆周率Pi、欧拉常数e、分贝dB、弧度、应变、宾汉数、摩擦系数、欧拉数、马赫数、雷诺数、品质因子等。

无量纲单位:摩尔分数(mol/mol)、质量百分浓度(kg/kg)、度(°)、弧度(rad)等。

量纲分析

针对某一问题,如果已知R与u_1,u_2,u_2,...的模型,需要确定未知参数,可通过量纲分析来确定

举个例子:
已知R = f(u_1,u_2,...) = u_1^a * u_2 ^ b *...[R] = [u_1]^a * [u_2]^b *...,可确定出a,b,c...。

难点:
1、确定哪些物理量有关,如确定R与u、v有关
2、确定模型,如确定R=u^a * v^b

白金汉Pi定理

白金汉Pi定理:设影响某现象的物理量数为n个,这些物理量的基本量纲为m个,则该物理现象可用n-m个独立的无量纲数群(准数)关系式表示
量纲法则:1.只有量纲相同的物理量,才能彼此相加、相减和相等; 2.指数函数、对数函数和三角函数的宗量应当是量纲1。

论文 浅谈量纲法则的合理应用

重写方程

g(u_1,u_2,u_3,...)=0
Pi_j = q_1^{a_1} * q_2^{a_2} * ...
确定常数a1~an,b1~bn,....,可将方程重写
g(u_1,u_2,u_3,...) = z(Pi_1,Pi_2,Pi_3,...)=0

疑问

解析 一词怎么解释?

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值