为了能够应用数学来描述物理对象,我们需要对其定量化。物理对象的定量化需要有单位和数 值,单位是作为度量标准的某个物理量。被测物理量的数值大小不仅取决于其本身,而且取决于所 选用的单位。例如为了描述一块地的范围,需要确定其面积的单位和数值的大小。我们可以说这是 块大小为 1 平方公里的地,也可以说这是块大小为 1000000 平方米的地。离开了单位,仅根据数值 我们无法判断一块地的大小。单位的选取往往带有任意性,比如说度量长短可以选用米为单位,也 可以选用厘米、分米、公里甚至光年为单位。然而这些单位都是用来度量同一个物理量—长度的, 它们之间可以相互换算,具有某种统一性。我们把这种统一性称为量纲。
一般来说,测量同一个物理量可以有不同的单位,但是它的量纲是唯一的。例如,测量长度可 以用厘米、分米、公里甚至光年为单位,但是决不能用公斤或吨为单位。不同量纲的物理量之间有 本质的区别,相互不能换算。说一根木头长度为 2×10−16 光年虽然很不合适,但是并没有原则性错误; 如果说一根木头长度为 100 公斤,就要让人笑掉大牙。
通常用[量]来表示物理量的量纲,不同的物理量往往有不同的量纲:长度的量纲记为 L,时 间的量纲记为 T,质量的量纲记为 M,无单位的物理量的量纲记为 1。一个具体的物理对象往往要有 许多不同的物理量来描述其不同的特性,我们可以把其中的一些看成是基本量,其他的是导出量。 基本量的量纲称为基本量纲,其他量的量纲可以由基本量纲导出。例如,我们取基本的量纲为 L、T 和 M,那么面积的量纲为 L2 ,速度的量纲为 LT−1 ,加速度的量纲为 LT−2 。
由于物理量是有量纲的,因此用数学公式来描述任何一个客观规律时,等式两边的量纲必须一 致,这个要求称为量纲一致原则。根据量纲一致原则和牛顿第二运动定律,我们可以导出力的量纲 为 MLT−2 。在量纲一致的原则下,问题中物理量之间关系的分析称为量纲分析。量纲分析是应用物 理理论解决实际问题的一个有力工具,可以用来合理地组合变量从而简化问题的处理,导出新知识 和获得新信息。下面我们来看几个典型的例子: