基本想法
冲击波的爆炸由“蘑菇云”反映出来,“蘑菇云”越大,扩散速度越快,能量越大。
假设:爆炸产生的冲击波以爆炸点为中心呈球面向四周传播,爆炸的能量越大,在一定时刻冲击波传播的越远。
泰勒测量:时刻t所对应的“蘑菇云” 的半径r
泰勒用量纲分析法建立数学模型,辅以小型试验,又利用测量数据对爆炸的能量进行估计。
量纲分析法
量纲齐次原则
动力学中基本量纲 | 导出量纲 |
---|---|
长度l的量纲L[l] | 速度v的量纲[v]=LT-1 |
质量m的量纲M[m] | 加速度a的量纲[a]=LT-2 |
时间t的量纲T[t] | 力f的量纲[f]=LMT-2 |
引力常数k的量纲[k] (
f
=
k
m
1
m
2
r
2
f=k\frac{m_1m_2}{r^2}
f=kr2m1m2)
[
k
]
=
[
f
]
[
l
]
2
[
m
]
−
2
=
L
3
M
−
1
T
−
2
[k]=[f][l]^2[m]^{-2}=L^3M^{-1}T^{-2}
[k]=[f][l]2[m]−2=L3M−1T−2
对无量纲量 α,α=1(=L0M0T0)
eg.单摆运动
求摆动周期的表达式
设物理量t,m,l,g之间有关系式,
t
=
λ
m
α
1
l
α
2
g
a
3
(
1
)
t=λm^{α_1}l^{α_2}g^{a_3}\quad(1)
t=λmα1lα2ga3(1)
α
1
,
α
2
,
α
3
为
待
定
系
数
,
λ
为
无
量
纲
量
α_1,α_2,α_3为待定系数,λ为无量纲量
α1,α2,α3为待定系数,λ为无量纲量
(
1
)
的
量
纲
表
达
式
[
t
]
=
[
m
]
α
1
[
l
]
α
2
[
g
]
α
3
(1)的量纲表达式[t]=[m]^{α_1}[l]^{α_2}[g]^{α_3}
(1)的量纲表达式[t]=[m]α1[l]α2[g]α3
推导出
T
=
M
α
1
L
α
2
+
α
3
T
−
2
α
3
T=M^{α_1}L^{α_2+α_3}T^{-2α_3}
T=Mα1Lα2+α3T−2α3
Pi定理
设 f ( q 1 , q 2 , . . . , q m ) = 0 设f(q_1,q_2,...,q_m)=0 设f(q1,q2,...,qm)=0
是 与 量 纲 单 位 无 关 的 物 理 定 律 , X 1 , X 2 , . . . X n 是 基 本 量 纲 , n ≤ m , q 1 , q 2 , . . . q m 的 量 纲 可 表 为 [ q j ] = ∏ i = 1 n X i a i j , j = 1 , 2 , . . . , m 是与量纲单位无关的物理定律,X_1,X_2,...X_n是基本量纲,n≤m,q_1,q_2,...q_m的量纲可表为[q_j]= \prod_{i=1}^nX_i^{a_{ij}},j=1,2,...,m 是与量纲单位无关的物理定律,X1,X2,...Xn是基本量纲,n≤m,q1,q2,...qm的量纲可表为[qj]=∏i=1nXiaij,j=1,2,...,m
量 纲 矩 阵 记 作 A = { a i j } n × m , 若 r a n k A = r 量纲矩阵记作A=\{a_{ij}\}_{n×m},若rankA=r 量纲矩阵记作A={aij}n×m,若rankA=r
线 性 齐 次 方 程 组 有 A y = 0 有 m − r 个 基 本 解 , 线性齐次方程组有Ay=0有m-r个基本解, 线性齐次方程组有Ay=0有m−r个基本解,
记 作 y s = ( y s 1 , y s 2 , . . . , y s m ) T , s = 1 , 2 , . . . , m − r 记作y_s=(y_{s1},y_{s2},...,y_{sm})^T,s=1,2,...,m-r 记作ys=(ys1,ys2,...,ysm)T,s=1,2,...,m−r
则 π s = ∏ j = 1 m q j y j ( s ) 为 m − r 个 无 量 纲 的 量 , 且 则π_s=\prod_{j=1}^mq_j^{y_j(s)}为m-r个无量纲的量,且 则πs=∏j=1mqjyj(s)为m−r个无量纲的量,且
F ( π 1 , π 2 , . . . , π m − r ) = 0 与 f ( q 1 , q 2 , . . . , q m ) = 0 等 价 , F 未 定 F(π_1,π_2,...,π_{m-r})=0与f(q_1,q_2,...,q_m)=0等价,F未定 F(π1,π2,...,πm−r)=0与f(q1,q2,...,qm)=0等价,F未定
原子弹爆炸能量估计的量纲分析方法建模
记爆炸能量为E,将“蘑菇云”近似看成一个球形,
时刻t球的半径为r
思考:r与哪些因素有关?
回答:t,E,空气密度ρ,大气压强P
得出
r
=
φ
(
t
,
E
,
ρ
,
P
)
r=φ(t,E,ρ,P)
r=φ(t,E,ρ,P)
进而有
f
(
r
,
t
,
E
,
ρ
,
P
)
=
0
f(r,t,E,ρ,P)=0
f(r,t,E,ρ,P)=0
基本量纲:
L
,
M
,
T
L,M,T
L,M,T
量纲矩阵是
R
a
n
k
A
=
3
导
出
A
y
=
0
,
y
=
(
y
1
,
y
2
,
y
3
,
y
4
,
y
5
)
T
有
2
个
基
本
解
Rank A=3导出Ay=0,y=(y_1,y_2,y_3,y_4,y_5)^T有2个基本解
RankA=3导出Ay=0,y=(y1,y2,y3,y4,y5)T有2个基本解
即得出
由于时间t非常短,能量非常大
借助小型爆炸数据确定λ≈1
空气密度ρ=1.25(kg/m3),用r,t的实际数据取平均,得出E=8.2825×1013(焦耳)。因为1千吨TNT炸药的能量是4.184×1012焦耳,可得爆炸的能量为E=19.7957(千吨)。
泰勒的计算(取对数)
r
=
(
t
2
E
ρ
)
1
5
→
l
o
g
10
r
=
2
5
l
o
g
10
t
+
1
2
l
o
g
10
(
E
ρ
)
→
令
y
=
c
=
1
2
l
o
g
10
(
E
ρ
)
→
y
=
5
2
l
o
g
10
r
−
l
o
g
10
(
t
)
r=(\frac{t^2E}{ρ})^{\frac{1}{5}}→log_{10}r=\frac{2}{5}log_{10}t+\frac{1}{2}log_{10}(\frac{E}{ρ})→令y=c=\frac{1}{2}log_{10}(\frac{E}{ρ})→y=\frac{5}{2}log_{10}r-log_{10}(t)
r=(ρt2E)51→log10r=52log10t+21log10(ρE)→令y=c=21log10(ρE)→y=25log10r−log10(t)
取
y
平
均
值
得
c
=
6.9038
取y平均值得c=6.9038
取y平均值得c=6.9038
因
此
E
=
8.0276
×
1
0
13
(
焦
耳
)
即
19.2
吨
因此E=8.0276×10^{13}(焦耳)即19.2吨
因此E=8.0276×1013(焦耳)即19.2吨
最小二乘法拟合r=atb
b=0.4058与2/5非常接近