代数方程与差分方程模型(二):原子弹爆炸的能量估计

本文探讨了原子弹爆炸能量的估算方法,通过量纲分析法建立了数学模型,考虑了时间、能量、空气密度和大气压强等因素。采用泰勒的计算方法和最小二乘法拟合,对爆炸能量进行了精确估算。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

基本想法

冲击波的爆炸由“蘑菇云”反映出来,“蘑菇云”越大,扩散速度越快,能量越大。

假设:爆炸产生的冲击波以爆炸点为中心呈球面向四周传播,爆炸的能量越大,在一定时刻冲击波传播的越远。

泰勒测量:时刻t所对应的“蘑菇云” 的半径r
在这里插入图片描述泰勒用量纲分析法建立数学模型,辅以小型试验,又利用测量数据对爆炸的能量进行估计。

量纲分析法

量纲齐次原则

动力学中基本量纲导出量纲
长度l的量纲L[l]速度v的量纲[v]=LT-1
质量m的量纲M[m]加速度a的量纲[a]=LT-2
时间t的量纲T[t]力f的量纲[f]=LMT-2

引力常数k的量纲[k] ( f = k m 1 m 2 r 2 f=k\frac{m_1m_2}{r^2} f=kr2m1m2)
[ k ] = [ f ] [ l ] 2 [ m ] − 2 = L 3 M − 1 T − 2 [k]=[f][l]^2[m]^{-2}=L^3M^{-1}T^{-2} [k]=[f][l]2[m]2=L3M1T2
对无量纲量 α,α=1(=L0M0T0)

eg.单摆运动

求摆动周期的表达式
设物理量t,m,l,g之间有关系式, t = λ m α 1 l α 2 g a 3 ( 1 ) t=λm^{α_1}l^{α_2}g^{a_3}\quad(1) t=λmα1lα2ga3(1)
α 1 , α 2 , α 3 为 待 定 系 数 , λ 为 无 量 纲 量 α_1,α_2,α_3为待定系数,λ为无量纲量 α1,α2,α3λ
( 1 ) 的 量 纲 表 达 式 [ t ] = [ m ] α 1 [ l ] α 2 [ g ] α 3 (1)的量纲表达式[t]=[m]^{α_1}[l]^{α_2}[g]^{α_3} (1)[t]=[m]α1[l]α2[g]α3
推导出 T = M α 1 L α 2 + α 3 T − 2 α 3 T=M^{α_1}L^{α_2+α_3}T^{-2α_3} T=Mα1Lα2+α3T2α3
在这里插入图片描述单摆运动中

在这里插入图片描述

Pi定理

设 f ( q 1 , q 2 , . . . , q m ) = 0 设f(q_1,q_2,...,q_m)=0 f(q1,q2,...,qm)=0
是 与 量 纲 单 位 无 关 的 物 理 定 律 , X 1 , X 2 , . . . X n 是 基 本 量 纲 , n ≤ m , q 1 , q 2 , . . . q m 的 量 纲 可 表 为 [ q j ] = ∏ i = 1 n X i a i j , j = 1 , 2 , . . . , m 是与量纲单位无关的物理定律,X_1,X_2,...X_n是基本量纲,n≤m,q_1,q_2,...q_m的量纲可表为[q_j]= \prod_{i=1}^nX_i^{a_{ij}},j=1,2,...,m X1,X2,...Xnnmq1,q2,...qm[qj]=i=1nXiaij,j=1,2,...,m
量 纲 矩 阵 记 作 A = { a i j } n × m , 若 r a n k A = r 量纲矩阵记作A=\{a_{ij}\}_{n×m},若rankA=r A={aij}n×m,rankA=r
线 性 齐 次 方 程 组 有 A y = 0 有 m − r 个 基 本 解 , 线性齐次方程组有Ay=0有m-r个基本解, 线Ay=0mr
记 作 y s = ( y s 1 , y s 2 , . . . , y s m ) T , s = 1 , 2 , . . . , m − r 记作y_s=(y_{s1},y_{s2},...,y_{sm})^T,s=1,2,...,m-r ys=(ys1,ys2,...,ysm)T,s=1,2,...,mr
则 π s = ∏ j = 1 m q j y j ( s ) 为 m − r 个 无 量 纲 的 量 , 且 则π_s=\prod_{j=1}^mq_j^{y_j(s)}为m-r个无量纲的量,且 πs=j=1mqjyj(s)mr
F ( π 1 , π 2 , . . . , π m − r ) = 0 与 f ( q 1 , q 2 , . . . , q m ) = 0 等 价 , F 未 定 F(π_1,π_2,...,π_{m-r})=0与f(q_1,q_2,...,q_m)=0等价,F未定 F(π1,π2,...,πmr)=0f(q1,q2,...,qm)=0F

原子弹爆炸能量估计的量纲分析方法建模

记爆炸能量为E,将“蘑菇云”近似看成一个球形,
时刻t球的半径为r
思考:r与哪些因素有关?
回答:t,E,空气密度ρ,大气压强P
得出 r = φ ( t , E , ρ , P ) r=φ(t,E,ρ,P) r=φ(t,E,ρ,P)
进而有 f ( r , t , E , ρ , P ) = 0 f(r,t,E,ρ,P)=0 f(r,t,E,ρ,P)=0
基本量纲: L , M , T L,M,T L,M,T
量纲矩阵是
在这里插入图片描述
R a n k A = 3 导 出 A y = 0 , y = ( y 1 , y 2 , y 3 , y 4 , y 5 ) T 有 2 个 基 本 解 Rank A=3导出Ay=0,y=(y_1,y_2,y_3,y_4,y_5)^T有2个基本解 RankA=3Ay=0y=(y1,y2,y3,y4,y5)T2
在这里插入图片描述
在这里插入图片描述得出
在这里插入图片描述由于时间t非常短,能量非常大
在这里插入图片描述借助小型爆炸数据确定λ≈1
在这里插入图片描述

空气密度ρ=1.25(kg/m3),用r,t的实际数据取平均,得出E=8.2825×1013(焦耳)。因为1千吨TNT炸药的能量是4.184×1012焦耳,可得爆炸的能量为E=19.7957(千吨)。

泰勒的计算(取对数)

r = ( t 2 E ρ ) 1 5 → l o g 10 r = 2 5 l o g 10 t + 1 2 l o g 10 ( E ρ ) → 令 y = c = 1 2 l o g 10 ( E ρ ) → y = 5 2 l o g 10 r − l o g 10 ( t ) r=(\frac{t^2E}{ρ})^{\frac{1}{5}}→log_{10}r=\frac{2}{5}log_{10}t+\frac{1}{2}log_{10}(\frac{E}{ρ})→令y=c=\frac{1}{2}log_{10}(\frac{E}{ρ})→y=\frac{5}{2}log_{10}r-log_{10}(t) r=(ρt2E)51log10r=52log10t+21log10(ρE)y=c=21log10(ρE)y=25log10rlog10(t)
取 y 平 均 值 得 c = 6.9038 取y平均值得c=6.9038 yc=6.9038
因 此 E = 8.0276 × 1 0 13 ( 焦 耳 ) 即 19.2 吨 因此E=8.0276×10^{13}(焦耳)即19.2吨 E=8.0276×1013()19.2

最小二乘法拟合r=atb

在这里插入图片描述b=0.4058与2/5非常接近

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值