量纲分析法

量纲是指物理量的种类属性,单位是指国际计量大会确定的物理量的度量基准,而物理量的大小是指其单位的倍数。

基本物理量只有7个,其他物理量都是由基本物理量组合而成,称为派生物理量。7个基本物理量的量纲成为基本量纲

量纲幂次定理:
任意参量的量纲均可以表示成基本量纲的幂次单项式。
对于力学系统的任意参量 p p p,其量纲可表示为: dim   p = M a L b T c \text{dim}\,p=M^aL^bT^c dimp=MaLbTc, 其中幂次均为实数。如果 p p p是无量纲量,则可表示为 dim   p = M 0 L 0 T 0 \text{dim}\,p=M^0L^0T^0 dimp=M0L0T0.

量纲一致定理:
当且仅当两个参量相同,它们才能相加减。
在任何公式中,如果出现量纲不同的单项式相加减,则公式必定有误。

Buckingham( Π \Pi Π定理):
设某物理问题有 i i i个量纲不同的参量 p 1 , p 2 , ⋯   , p i p_1,p_2,\cdots,p_i p1,p2,,pi, 他们满足参量方程 f ( p 1 , p 2 , ⋯   , p i ) = 0 f(p_1,p_2,\cdots,p_i)=0 f(p1,p2,,pi)=0。 若这组参量有 j < i j<i j<i个相互独立的量纲,则它们可表示为 k ≡ i − j k≡i-j kij个无量纲量 Π 1 , Π 2 , ⋯   , Π k \Pi_1,\Pi_2,\cdots,\Pi_k Π1,Π2,,Πk,并可将上述参量方程表示为无量纲形式 f ′ ( Π 1 , Π 2 , ⋯   , Π k ) = 0 f'(\Pi_1,\Pi_2,\cdots,\Pi_k)=0 f(Π1,Π2,,Πk)=0
该定理可推广为 f ( p 1 , p 2 , ⋯   , p i ) = q f(p_1,p_2,\cdots,p_i)=q f(p1,p2,,pi)=q ——> f ′ ( Π 1 , Π 2 , ⋯   , Π k ) = Π q f'(\Pi_1,\Pi_2,\cdots,\Pi_k)=\Pi_q f(Π1,Π2,,Πk)=Πq

量纲分析步骤:
第一,列出问题的所有独立参量及其量纲,记其数量为 i i i
第二,在上述 i i i个独立参量中,选择 j j j个重复参量的量纲,构造 k ≡ i − j k≡i-j kij个无量纲量 Π 1 , Π 2 , ⋯   , Π k \Pi_1,\Pi_2,\cdots,\Pi_k Π1,Π2,,Πk。 如果得到的结果有问题,则降低 j j j值再重复上述内容。
第三,为便于理解和交流,对某些无量纲量进行调整(如交换分子分母),将其变为学术界常用的无量纲量。
第四,验证所有无量纲量,写出问题的最终量纲关系。

局限性

  1. ==角度、应变等是无量纲量。==在量纲分析中,它们包含在某个无量纲量或无量纲方程中,无法提取出来。
  2. ==许多参量彼此间毫无关系,却具有相同的量纲。==例如,频率、角速度、应变率的量纲都是 T − 1 T^{-1} T1。如果这类物理意义不同、量纲相同的参量出现在同一物理问题中,则必须考察它们之间的物理关系,否则难以用量纲分析来进行区分。

改进
定向量纲:
力学系统的基本量纲数为 j = 3 j=3 j=3,若系统参量数为 i > > j i>>j i>>j,则参量方程中包含的无量纲数 k ≡ i − j k≡i-j kij过多,不利于揭示问题的内在规律。所谓定向量纲,就是为力学系统建立坐标系,将系统参量表示为坐标分量形式,并对不同分量采用不同量纲。

例如,对三维力学系统建立直角坐标系 o x y z oxyz oxyz,将位移沿三个坐标轴的分量量纲分别记为 L x , L y , L z L_x,L_y,L_z Lx,Ly,Lz。相当于增加了基本量纲数。对许多力学问题,定向量纲有利于揭示其内在规律。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值