量纲是指物理量的种类属性,单位是指国际计量大会确定的物理量的度量基准,而物理量的大小是指其单位的倍数。
基本物理量只有7个,其他物理量都是由基本物理量组合而成,称为派生物理量。7个基本物理量的量纲成为基本量纲。
量纲幂次定理:
任意参量的量纲均可以表示成基本量纲的幂次单项式。
对于力学系统的任意参量
p
p
p,其量纲可表示为:
dim
p
=
M
a
L
b
T
c
\text{dim}\,p=M^aL^bT^c
dimp=MaLbTc, 其中幂次均为实数。如果
p
p
p是无量纲量,则可表示为
dim
p
=
M
0
L
0
T
0
\text{dim}\,p=M^0L^0T^0
dimp=M0L0T0.
量纲一致定理:
当且仅当两个参量相同,它们才能相加减。
在任何公式中,如果出现量纲不同的单项式相加减,则公式必定有误。
Buckingham(
Π
\Pi
Π定理):
设某物理问题有
i
i
i个量纲不同的参量
p
1
,
p
2
,
⋯
,
p
i
p_1,p_2,\cdots,p_i
p1,p2,⋯,pi, 他们满足参量方程
f
(
p
1
,
p
2
,
⋯
,
p
i
)
=
0
f(p_1,p_2,\cdots,p_i)=0
f(p1,p2,⋯,pi)=0。 若这组参量有
j
<
i
j<i
j<i个相互独立的量纲,则它们可表示为
k
≡
i
−
j
k≡i-j
k≡i−j个无量纲量
Π
1
,
Π
2
,
⋯
,
Π
k
\Pi_1,\Pi_2,\cdots,\Pi_k
Π1,Π2,⋯,Πk,并可将上述参量方程表示为无量纲形式
f
′
(
Π
1
,
Π
2
,
⋯
,
Π
k
)
=
0
f'(\Pi_1,\Pi_2,\cdots,\Pi_k)=0
f′(Π1,Π2,⋯,Πk)=0。
该定理可推广为
f
(
p
1
,
p
2
,
⋯
,
p
i
)
=
q
f(p_1,p_2,\cdots,p_i)=q
f(p1,p2,⋯,pi)=q ——>
f
′
(
Π
1
,
Π
2
,
⋯
,
Π
k
)
=
Π
q
f'(\Pi_1,\Pi_2,\cdots,\Pi_k)=\Pi_q
f′(Π1,Π2,⋯,Πk)=Πq。
量纲分析步骤:
第一,列出问题的所有独立参量及其量纲,记其数量为
i
i
i。
第二,在上述
i
i
i个独立参量中,选择
j
j
j个重复参量的量纲,构造
k
≡
i
−
j
k≡i-j
k≡i−j个无量纲量
Π
1
,
Π
2
,
⋯
,
Π
k
\Pi_1,\Pi_2,\cdots,\Pi_k
Π1,Π2,⋯,Πk。 如果得到的结果有问题,则降低
j
j
j值再重复上述内容。
第三,为便于理解和交流,对某些无量纲量进行调整(如交换分子分母),将其变为学术界常用的无量纲量。
第四,验证所有无量纲量,写出问题的最终量纲关系。
局限性
- ==角度、应变等是无量纲量。==在量纲分析中,它们包含在某个无量纲量或无量纲方程中,无法提取出来。
- ==许多参量彼此间毫无关系,却具有相同的量纲。==例如,频率、角速度、应变率的量纲都是 T − 1 T^{-1} T−1。如果这类物理意义不同、量纲相同的参量出现在同一物理问题中,则必须考察它们之间的物理关系,否则难以用量纲分析来进行区分。
改进
定向量纲:
力学系统的基本量纲数为
j
=
3
j=3
j=3,若系统参量数为
i
>
>
j
i>>j
i>>j,则参量方程中包含的无量纲数
k
≡
i
−
j
k≡i-j
k≡i−j过多,不利于揭示问题的内在规律。所谓定向量纲,就是为力学系统建立坐标系,将系统参量表示为坐标分量形式,并对不同分量采用不同量纲。
例如,对三维力学系统建立直角坐标系 o x y z oxyz oxyz,将位移沿三个坐标轴的分量量纲分别记为 L x , L y , L z L_x,L_y,L_z Lx,Ly,Lz。相当于增加了基本量纲数。对许多力学问题,定向量纲有利于揭示其内在规律。