引子:第二次世界大战时期,应该剑桥大学有位力学家叫泰勒(Geoffrey Ingram Taylor,1886-1975),1940s彼时正是美国第一颗原子弹爆炸,他用量纲分析方法,通过几张原子弹爆炸的照片就推算出爆炸能量,与美国军方的准确数字相差无几。泰勒推算的是1.7万吨,军方准确数字是1.9万吨,当时美国人以为有机密泄露,谁知道人家用自己的力学知识算了几下就估算出来了。
言归正传,量纲分析是一种非常实用的物理力学分析方法(郑伟谋(2021):量纲分析和量纲制),著名的例子是物理学家 GI Taylor 根据报纸新闻中公布的原子弹爆炸的照片序列将原子弹释放的能量计算了出来,其估计值非常接近之后美国总统杜鲁门公布的值(王振东(2023):泰勒和第一颗原子弹的故事)。
本文讨论几个量纲分析的典例,包括:自由落体运动、单摆周期的估算、长圆柱管道中流动阻力估算、锥形裂纹尺寸估算。
1. 自由落体运动的下落高度
假设一个物体从高处掉落,空气阻力可以忽略不计,分析物体的下落高度随时间 t t t 的变化情况。量纲分析的知识告诉我们,首先,需根据问题的物理背景选出主要因素,对本问题来说,是重力加速度 g g g (单位m/s^2)和时间 t t t(单位s)。
我们用以下记号表示某物理量 P P P的量纲和单位:
[ P ] = L a T b M c [P] = L^aT^bM^c [P]=LaTbMc
式中 T , L , M T,L,M T,L,M分别为基本量纲,时间、长度和质量; a , b , c a,b,c a,b,c表示它们的幂次。
待分析的物理量是下落高度 h h h:
[ h ] = L [h] = L [h]=L
同理,容易写出时间和重力加速度的量纲:
[ t ] = T , [ g ] = L T − 2 [t] = T, \; [g] = LT^{-2} [t]=T,[g]=LT−2
量纲相似律告诉我们,某物理量 P P P如果和其它若干物理量 p 1 , p 2 , . . . , p n p_1,p_2,...,p_n p1,p2,...,pn有关,即 P P P为 p 1 , p 2 , . . . , p n p_1,p_2