主动隔振
主动隔振:将作为振源的机器与地基隔离。
用单自由度系统举例,隔振材料位k与c
隔振前机器传到地基的力
F
0
e
i
w
t
F_0e^{iwt}
F0eiwt
隔振后机器传到地基的响应
x
=
F
0
k
β
e
i
(
w
t
−
θ
1
)
x=\frac{F_0}{k}\beta e^{i(wt-\theta_1)}
x=kF0βei(wt−θ1),其中
F
0
k
\frac{F_0}{k}
kF0是静变形,
β
=
1
(
1
−
s
2
)
2
+
(
2
ζ
s
)
2
\beta=\frac{1}{\sqrt{(1-s^2)^2+(2\zeta s)^2}}
β=(1−s2)2+(2ζs)21是振幅放大因子,
θ
1
=
t
g
−
1
2
ζ
s
(
1
−
s
2
)
\theta_1=tg^{-1}\frac{2\zeta s}{(1-s^2)}
θ1=tg−1(1−s2)2ζs为相位差,
s
=
w
/
w
0
s=w/w_0
s=w/w0为频率比,
ζ
=
c
/
(
2
m
w
0
)
\zeta = c/(2mw_0)
ζ=c/(2mw0)为相对阻尼系数也称阻尼比,是阻尼系数与临界阻尼系数的比,因此是一个无量纲数。
隔振后机器传到地基的力
F
1
=
c
∗
x
′
+
k
x
=
(
i
c
w
+
k
)
F
0
k
β
e
i
(
w
t
−
θ
1
)
F_1=c*x'+kx=(icw+k)\frac{F_0}{k}\beta e^{i(wt-\theta_1)}
F1=c∗x′+kx=(icw+k)kF0βei(wt−θ1)
隔振系数:原先的力与现在的力的幅值之比
不同颜色表示阻尼比,可以看到只有频率比大于
2
\sqrt{2}
2时,隔振才有效果,隔振系数小于1,此时阻尼越大隔振效果越差。
观察图我们可以得出以下结论:可以修改结构,以降低结构固有频率(即
(
2
,
1
)
(\sqrt{2},1)
(2,1)这个点会往前移),这样隔振系数小于1的范围更大。在满足结构要求的情况下(对于旋转机械,工作转速如果大于临界转速,那么临界转速附近振动会很大,阻尼也是必须的),尽可能减小阻尼,这样隔振系数越小。
被动隔振
被动隔振:将作为振源的地基与机器隔离。
隔振前地基位移:
x
f
=
D
e
i
w
t
x_f=De^{iwt}
xf=Deiwt
隔振系数:原先的位移与现在的位移的幅值之比
主动隔振系数与被动隔振系数,数值大小一样,含义不同。
mooc课程
工程振动测试技术 刘习军
振动理论及工程应用 刘习军
振动力学 刘延柱