Planar data classification with one hidden layer
目录
3 - Simple Logistic Regression
4.1 - Defining the neural network structure
4.2 - Initialize the model's parameters
4.4 - Integrate parts 4.1, 4.2 and 4.3 in nn_model()
这节作业会学到:
- 实现具有单个隐藏层的二分类神经网络
- 使用非线性激活函数,例如tanh
- 计算交叉熵损失
- 实现前向和反向传播
1 - Packages
首先,运行下面的单元来导入在这个作业中需要的所有包:
- numpy是使用python进行科学计算的基础包。
- sklearn为数据挖掘和数据分析提供了简单有效的工具。
- Matplotlib是一个用于在Python中绘制图形的库。
- testCases提供了一些测试用例来评估函数的正确性。
- planar_utils提供了本任务中使用的各种有用的函数。
# Package imports
import numpy as np
import matplotlib.pyplot as plt
from testCases import *
import sklearn
import sklearn.datasets
import sklearn.linear_model
from planar_utils import plot_decision_boundary, sigmoid, load_planar_dataset, load_extra_datasets
from functools import reduce
import operator
%matplotlib inline
np.random.seed(1) # set a seed so that the results are consistent
2 - Dataset
首先,获取将要使用的数据集,下面的代码会加载一个“flower”二分类的数据集,并得到变量X和Y。
X, Y = load_planar_dataset()
利用matplotlib可视化数据,当把标签为0的点涂红,把标签为1的点涂蓝,该数据看起来像一朵花,本任务就是构造一个模型来拟合这个数据。
# Visualize the data:
plt.scatter(X[0, :], X[1, :], c=Y.reshape(-1,), s=40, cmap=plt.cm.Spectral);
拥有的数据:
- 一个numpy数组(矩阵)X,包含了特征(x1, x2)
- 一个numpy数组(向量)Y,包含了标签(red:0, blue:1)
练习:你有多少个训练样本?X和Y的形状是什么样的?
### START CODE HERE ### (≈ 3 lines of code)
shape_X = X.shape
shape_Y = Y.shape
m = shape_X[1] # training set size
### END CODE HERE ###
print ('The shape of X is: ' + str(shape_X))
print ('The shape of Y is: ' + str(shape_Y))
print ('I have m = %d training examples!' % (m))
The shape of X is: (2, 400)
The shape of Y is: (1, 400)
I have m = 400 training examples!
3 - Simple Logistic Regression
在构造一个完整的神经网络之前,我们先来看看逻辑斯蒂回归在这个问题上面表现如何,可以使用sklearn的内置函数来完成。
# Train the logistic regression classifier
clf = sklearn.linear_model.LogisticRegressionCV();
clf.fit(X.T, Y.T.reshape(-1,));
现在可以画出这个模型的决策边界:
# Plot the decision boundary for logistic regression
plot_decision_boundary(lambda x: clf.predict(x), X, Y.reshape(-1,))
plt.title("Logistic Regression")
# Print accuracy
LR_predictions = clf.predict(X.T)
print ('Accuracy of logistic regression: %d ' % float((np.dot(Y,LR_predictions) + np.dot(1-Y,1-LR_predictions))/float(Y.size)*100) +
'% ' + "(percentage of correctly labelled datapoints)")
Accuracy of logistic regression: 47 % (percentage of correctly labelled datapoints)