【神经网络系列(初级)】神经网络的前向传播——从输入到特征的维度变换

【通俗理解】神经网络的前向传播——从输入到特征的维度变换

前向传播的类比

  • 你可以把神经网络的前向传播想象成一条生产线,输入数据是原材料,经过一系列加工(神经元处理),最终输出成品(特征表示)。每个加工步骤(神经元)都会根据一定的规则(权重和偏置)对材料进行变换,最终得到我们想要的产品。
  • 神经网络中,输入层就像是原料仓库,隐藏层是加工车间,而输出层则是成品展示区。前向传播就是这条生产线上的物流过程,确保原材料能够顺利转化为成品。
    在这里插入图片描述

相似公式比对

  • 线性变换公式 y = W x + b y = Wx + b y=Wx+b,描述了输入 x x x经过线性变换(权重 W W W和偏置 b b b)后得到输出 y y y
  • 神经网络的前向传播(以一层为例): a = σ ( W x + b ) a = \sigma(Wx + b) a=σ(Wx+b),其中 σ \sigma σ是激活函数,描述了输入 x x x经过线性变换和激活函数处理后得到激活值 a a a

在这里插入图片描述

通俗解释与案例

  1. 前向传播的核心概念

    • 前向传播是神经网络中从输入层到输出层的信息传递过程。
    • 在每一层,输入数据都会经过线性变换(权重和偏置)和激活函数处理,然后传递给下一层。
    • 例如,在图像识别任务中,输入是一张图像,经过神经网络的前向传播,输出是图像的特征表示。
  2. 前向传播的优势

    • 前向传播能够自动学习输入数据的特征表示,无需手动提取特征。
    • 神经网络通过前向传播可以处理复杂的非线性问题。
  3. 前向传播与神经网络的类比

    • 你可以把前向传播比作生产线上的物流过程,确保原材料(输入数据)能够经过一系列加工(神经元处理)后转化为成品(特征表示)。
    • 神经网络则像是整个工厂,前向传播是其中的核心流程。

在这里插入图片描述

前向传播与神经网络交汇的核心作用

组件/步骤描述
输入层接收原始输入数据,如图像、文本等。
隐藏层对输入数据进行非线性变换,学习数据的特征表示。
输出层产生最终的输出,如分类结果、回归值等。
前向传播连接输入层、隐藏层和输出层,确保数据能够顺序传递并处理。

公式探索与推演运算

前向传播的公式推导

对于一层神经网络,前向传播的公式可以表示为:

a = σ ( W x + b ) a = \sigma(Wx + b) a=σ(Wx+b)

其中, x x x是输入数据, W W W是权重矩阵, b b b是偏置向量, σ \sigma σ是激活函数, a a a是激活值。

具体计算示例

假设输入数据 x x x是一个784维的向量(28x28的灰度图像展平),隐藏层有128个神经元。权重矩阵 W W W的维度将是128x784,偏置向量 b b b的维度将是128。激活函数 σ \sigma σ是ReLU函数。

前向传播的计算过程如下:

  1. 计算线性变换: z = W x + b z = Wx + b z=Wx+b,其中 z z z是一个128维的向量。
  2. 应用激活函数: a = σ ( z ) a = \sigma(z) a=σ(z),其中 a a a是激活值,也是一个128维的向量。

在这里插入图片描述

与相似公式的比对

  • 线性变换公式 y = W x + b y = Wx + b y=Wx+b神经网络的前向传播 a = σ ( W x + b ) a = \sigma(Wx + b) a=σ(Wx+b) 的主要区别在于后者增加了激活函数 σ \sigma σ
  • 激活函数的引入使得神经网络能够学习复杂的非线性关系。

公式推导与相似公式比对

  • 线性回归 中的预测公式也是 y = W x + b y = Wx + b y=Wx+b,但它没有激活函数,主要用于线性问题的建模。
  • 逻辑回归 虽然也使用 y = σ ( W x + b ) y = \sigma(Wx + b) y=σ(Wx+b) 的形式,但其中的 σ \sigma σ 是sigmoid函数,用于二分类问题。

在这里插入图片描述

关键词提炼

#前向传播
#神经网络
#线性变换
#激活函数
#ReLU
#特征表示
#深度学习
#预测
#非线性问题

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

神经美学-茂森

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值