机器学习实战之分类篇 一 朴素贝叶斯(从原理到简单词性检测)

朴素贝叶斯(Navie Bayes):

       朴素贝叶斯是贝叶斯决策理论的一部分,之所以称之为“朴素”,其原因在于该算法以自变量之间的独立(条件特征独立)性和连续变量的正态性假设为前提。

       贝叶斯决策理论

       假设数据集由两类数据组成,数据分布如上图,现在用p_1(x,y)表示数据点(x,y)属于类别1(图中红色圆点表示的类别)的概率,用p_2(x,y)表示数据点(x,y)属于类别2(图中蓝色三角形表示的类别)的概率,那么对于一个新数据点(x',y'),可以用下面的规则来判断它的类别:

      如果p_1(x',y')>p_2(x',y'),那么类别为1
      如果p_1(x',y')<p_2(x',y'),那么类别为2
      贝叶斯决策理论的核心思想为选择具有最高概率的决策。接下来就是考虑如何计算p1和p2概率。

      条件概率:

       在学习计算p1 和p2概率之前,需要了解什么是条件概率(Conditional probability),P(A|B)来表示在事件B发生的情况下,事件A发生的概率。

       朴素贝叶斯基于以下假设:

      对于n个特征的贝叶斯理论,存在如下公式:

                                    P(a|X) = P(a)P(X|a)/P(X) = P(x_1, x_2, \ ... , x_n|a)P(a)/P(X)

      通常P(X)概率容易求得且分母相同,因此为简单计算故省略。

                                   P(a|X) = P(x_1, x_2, \ ... , x_n|a)P(a)/P(X) = {P(x_1|a)*P(x_2|a)*...*P(x_n|a)}P(a)/P(X)

      值得注意的是,如果P(x_i|a) = 0,则P(a|X) = 0与实际不符合,需要进行修正调整。即假设初始条件下的P(x_i|a) = 1/2,为避免下溢现象(小数越乘越小而接近0)需要进行对数化运算,进而避免舍入误差(著名的极大似然估计原理就采用了对数化求最值同时化简运算的目的)。

       由此,可设计基于贝叶斯理论的分类器模型编程实现。这里以简单的词性检测为例,检测语句中是否含有敏感单词。

import numpy as np
from functools import reduce
'''
Function : createData()
    Description : to create train dataSet
    Args : None
    Rets : postingList, labelVector
'''
def createData():
    postingList = [['my', 'dog', 'has', 'flea', 'problems', 'help', 'please'],     
                 ['maybe', 'not', 'take', 'him', 'to', 'dog', 'park', 'stupid'],
                 ['my', 'dalmation', 'is', 'so', 'cute', 'I', 'love', 'him'],
                 ['stop', 'posting', 'stupid', 'worthless', 'garbage'],
                 ['mr', 'licks', 'ate', 'my', 'steak', 'how', 'to', 'stop', 'him'],
                 ['quit', 'buying', 'worthless', 'dog', 'food', 'stupid']]
    labelVector = [0, 1, 0, 1, 0, 1]
    return postingList, labelVector

'''
Function : createWordList(postingList)
    Description : to convert postingList to word list
    Args : postingList
    Rets : wordList
'''
def createWordList(postingList):
    wordSet = set([])
    for doc in postingList:
        wordSet = wordSet | set(doc)
    return list(wordSet)
'''
Function : words2Vector(wordList, subSet)
    Description : to convert words to vector
    Args : wordList
            subSet
    Rets : wordVector
'''
def words2Vector(wordList, subSet):
    wordVector = [0] * len(wordList)
    for word in subSet:
        if word in wordList:
            wordVector[wordList.index(word)] = 1
        else:
            print('the word %s is not in wordList'%(word))
    return wordVector
'''
Function : navieBayes(trainMatrix, labelVector)
    Description : to adapt navieBayes method
    Args : trainMatrix
            labelVector
    Rets : cp_0, cp_1, p_abusive
'''
def navieBayes(trainMatrix, labelVector):
    numTrains = len(trainMatrix)
    numWords = len(trainMatrix[0])
    #pre probility
    p_abusive = sum(labelVector) / float(numTrains)
    '''
    nump_0 = np.zeros(numWords)
    nump_1 = np.zeros(numWords)
    '''
    nump_0 = np.ones(numWords)
    nump_1 = np.ones(numWords)
    '''
    demo_0 = 0.0
    demo_1 = 0.0
    '''
    demo_0 = 2.0
    demo_1 = 2.0
    for i in range(numTrains):
        if labelVector[i] == 1:
            nump_1 += trainMatrix[i]
            demo_1 += sum(trainMatrix[i])
        else:
            nump_0 += trainMatrix[i]
            demo_0 += sum(trainMatrix[i])
    '''
    cp_1 = nump_1 / demo_1
    cp_0 = nump_0 / demo_0
    '''
    cp_1 = np.log(nump_1 / demo_1)
    cp_0 = np.log(nump_0 / demo_0)
    return cp_0, cp_1, p_abusive
'''
Function : train(testVector, cp_0, cp_1, p_abusive)
    Args : testVector
            cp_0
            cp_1
            p_abusive
    Rets : True or False (whether the testVector belongs to abusive words)
'''
def train(testVetctor, cp_0, cp_1, p_abusive):
    
    '''
    p_0 = reduce(lambda x, y: x * y, testVetctor * cp_0) * (1 - p_abusive)
    p_1 = reduce(lambda x, y: x * y, testVetctor * cp_1) * p_abusive
    print('p_0: \n', p_0)
    print('p_1: \n', p_1)
    '''
    p_0 = sum(testVetctor * cp_0) + np.log(1 - p_abusive)
    p_1 = sum(testVetctor * cp_1) + np.log(p_abusive)
    if p_1 > p_0:
        return True
    else:
        return False

if __name__ == '__main__':
    postingList, labelVector = createData()
    for each in postingList:
        print(each)
    print('labelVector : \n', labelVector)
    wordList = createWordList(postingList)
    print('wordList: \n', wordList)
    trainMatrix = []
    for subSet in postingList:
        trainMatrix.append(words2Vector(wordList, subSet))
    print('trainMatrix : \n', trainMatrix)
    cp_0, cp_1, p_abusive = navieBayes(trainMatrix, labelVector)
    print('cp_0: \n', cp_0)
    print('cp_1: \n', cp_1)
    print('p_abusive: \n', p_abusive)
    #test = ['love', 'my', 'dalmation']
    test = ['stupid', 'worthless', 'garbage']
    testVetctor = words2Vector(wordList, test)
    if train(testVetctor, cp_0, cp_1, p_abusive):
        print(testVetctor, 'belongs to abusive words')
    else:
        print(testVetctor, 'not belongs to abusive words')

实验结果:

       朴素贝叶斯算法是有监督的学习算法,解决的是分类问题,如客户是否流失、是否值得投资、信用等级评定等多分类问题。该算法的优点在于简单易懂、学习效率高、在某些领域的分类问题中能够与决策树、神经网络相媲美。

朴素贝叶斯优点:

      1、生成式模型,通过计算概率来进行分类,可以用来处理多分类问题;
      2、对小规模的数据表现很好,适合多分类任务,适合增量式训练,算法也比较简单;

朴素贝叶斯缺点:

      1、对输入数据的表达形式很敏感;
      2、由于朴素贝叶斯的“朴素”特点,所以会带来一些准确率上的损失;
      3、需要计算先验概率,分类决策存在错误率;

  • 2
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值