机器学习中的准确率,敏感性,特异性,阳性预测值,阴性预测值,假阳率,假阴率 -九五小庞

本文详细介绍了机器学习中常用的评价指标,如准确率、敏感性、特异性等,以及它们的计算公式,强调这些指标在评估模型性能和选择最优模型中的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

机器学习中常用的评价指标包括准确率(Accuracy)、敏感性(Sensitivity)、特异性(Specificity)、阳性预测值(Positive Predictive Value,PPV)、阴性预测值(Negative Predictive Value,NPV)、假阳率(False Positive Rate,FPR)和假阴率(False Negative Rate,FNR)。

准确率是指分类模型正确预测的样本数占总样本数的比例,其计算公式为:(TP + TN) / (TP + TN + FP + FN),其中TP表示真正例,TN表示真反例,FP表示假正例,FN表示假反例。准确率越高,说明模型的整体性能越好。

敏感性也称为召回率或真正率,是指分类模型正确预测为正例的样本数占所有正例样本数的比例,其计算公式为:TP / (TP + FN)。敏感性越高,说明模型在正例样本上的识别能力越强。

特异性是指分类模型正确预测为反例的样本数占所有反例样本数的比例,其计算公式为:TN / (TN + FP)。特异性越高,说明模型在反例样本上的识别能力越强。

阳性预测值是指分类模型预测为正例的样本中真正为正例的比例,其计算公式为:TP / (TP + FP)。阳性预测值越高,说明模型预测为正例的样本越可靠。

阴性预测值是指分类模型预测为反例的样本中真正为反例的比例,其计算公式为:TN / (TN + FN)。阴性预测值越高,说明模型预测为反例的样本越可靠。

假阳率是指分类模型错误地将正例预测为反例的比例,其计算公式为:FP / (FP + TP)。假阳率越高,说明模型误判正例为反例的概率越大。

假阴率是指分类器错误地将反例预测为正例的比例,其计算公式为:FN / (FN + TN)。假阴率越高,说明模型误判反例为正例的概率越大。

这些评价指标可以用于评估分类模型的性能,从而选择最优的模型进行后续任务。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值