<Laplacian Regularized Few-Shot Learning>笔记

16 篇文章 3 订阅
9 篇文章 1 订阅

思想

we minimize a quadratic binary-assignment function containing two terms:
(1) a unary term assigning query samples to the nearest class prototype, and
(2) a pairwise Laplacian term encouraging nearby query samples to have consistent label assignments.

( 1 ) (1) (1) 每个query要和对应标签的原型距离尽可能近
( 2 ) (2) (2)每个query要尽可能和相似的其他query的标签一样

数学公式

在这里插入图片描述

特征提取器 f θ f_{\theta} fθ

使用不同的网络,输出的特征维度也不同
特 征 提 取 器 f θ = { R e s N e t 18 / R e s N e t 50 = 512 d i m e n s i o n M o b i l e N e t = 1024 d i m e n s i o n W R N = 640 d i m e n s i o n D e n s e N e t = 1024 d i m e n s i o n 特征提取器f_{\theta}=\left\{ \begin{aligned} ResNet18/ResNet50 & = & 512 dimension \\ MobileNet & = &1024 dimension \\ WRN & = &640 dimension \\ DenseNet & = &1024 dimension \end{aligned} \right. fθ=ResNet18/ResNet50MobileNetWRNDenseNet====512dimension1024dimension640dimension1024dimension

实现细节

在这里插入图片描述

Proposed Algorithm for LaplacianShot

在这里插入图片描述

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值