思想
we minimize a quadratic binary-assignment function containing two terms:
(1) a unary term assigning query samples to the nearest class prototype, and
(2) a pairwise Laplacian term encouraging nearby query samples to have consistent label assignments.
(
1
)
(1)
(1) 每个query要和对应标签的原型距离尽可能近
(
2
)
(2)
(2)每个query要尽可能和相似的其他query的标签一样
数学公式
特征提取器 f θ f_{\theta} fθ
使用不同的网络,输出的特征维度也不同
特
征
提
取
器
f
θ
=
{
R
e
s
N
e
t
18
/
R
e
s
N
e
t
50
=
512
d
i
m
e
n
s
i
o
n
M
o
b
i
l
e
N
e
t
=
1024
d
i
m
e
n
s
i
o
n
W
R
N
=
640
d
i
m
e
n
s
i
o
n
D
e
n
s
e
N
e
t
=
1024
d
i
m
e
n
s
i
o
n
特征提取器f_{\theta}=\left\{ \begin{aligned} ResNet18/ResNet50 & = & 512 dimension \\ MobileNet & = &1024 dimension \\ WRN & = &640 dimension \\ DenseNet & = &1024 dimension \end{aligned} \right.
特征提取器fθ=⎩⎪⎪⎪⎪⎨⎪⎪⎪⎪⎧ResNet18/ResNet50MobileNetWRNDenseNet====512dimension1024dimension640dimension1024dimension