对于假设函数:
0、分类
就是字面的意思,对某个事物进行分类,好的还是坏的,yes或者no,等等。一般实现时使用1或者0。也就是说得出的结果是两个离散值0,1,即。
线性回归应用在分类问题中的局限性:
当输出在(0,1)之间时,我们会得到一个期望的值,但是如果输出在1之外的话,线性回归可能得到一个很差的结果。
所以需要引进一个函数:Logistic函数
logistic函数的定义域为,值域为。就用这个函数对目标进行分类。
将假设函数与 logistic函数 结合后为:
,
这时我们暂时可以这么认为:只要当时,那么我们可以认为结果为1,反之亦然。
一、Logistic回归模型
,
现考虑有 n+1个独立的向量(其实是n个,恒等于1),设条件概率为根据训练量相对于事件发生的概率。
那么用Logistic回归模型表示:
同理,y不发生的概率就是:
现在假设训练样本中有 m 个训练样本,其训练结果分别为。
设在给定条件下(第 i 个训练样本的向量) 的概率为: