逻辑回归的梯度下降

这篇博客探讨了逻辑回归在分类问题中的应用,解释了由于线性回归的局限性而引入Logistic函数的原因。文章详细介绍了Logistic回归模型,并通过最大似然估计构建目标函数。接着,讨论了逻辑回归的梯度下降算法,比较了它与线性回归梯度下降的异同。最后,提供了C++代码实现逻辑回归的梯度下降过程。
摘要由CSDN通过智能技术生成

对于假设函数:h(\theta)=\theta_{0}x_{0}+\theta_{1}x_{1}+\cdots +\theta_{n}x_{n}=\theta^{T}X

0、分类

就是字面的意思,对某个事物进行分类,好的还是坏的,yes或者no,等等。一般实现时使用1或者0。也就是说得出的结果是两个离散值0,1,即y\in {0,1}

线性回归应用在分类问题中的局限性:

 当输出在(0,1)之间时,我们会得到一个期望的值,但是如果输出在1之外的话,线性回归可能得到一个很差的结果。

所以需要引进一个函数:Logistic函数    g(z)=\frac{1}{1+e^{-z}}

logistic函数的定义域为(-\infty ,+\infty ),值域为(0,1)。就用这个函数对目标进行分类。 

将假设函数h(\theta)=\theta_{0}x_{0}+\theta_{1}x_{1}+\cdots +\theta_{n}x_{n}=\theta^{T}X与 logistic函数g(z)=\frac{1}{1+e^{-z}} 结合后为:

h(\theta)=\frac{1}{1+e^{\theta^{T}X}}  ,

这时我们暂时可以这么认为:只要当h(\theta)>0.5时,那么我们可以认为结果为1,反之亦然。

一、Logistic回归模型

h(\theta)=\theta_{0}x_{0}+\theta_{1}x_{1}+\cdots +\theta_{n}x_{n}=\theta^{T}X ,\theta=(\theta_{0},\theta_{1},\cdots ,\theta_{n})    X=(x_{0},x_{1},\cdots ,x_{n})^{T}

现考虑有 n+1个独立的向量X(其实是n个,x_{0}恒等于1),设条件概率P(y=1|X)为根据训练量相对于事件X发生的概率。

那么用Logistic回归模型表示:P(y=1|X)=g(X)=\frac{1}{1+e^{-X}}

同理,y不发生的概率就是:P(y=0|X)=1-g(X)=\frac{1}{1+e^{X}}

现在假设训练样本中有 m 个训练样本,其训练结果分别为y_{1},y_{2},\cdots ,y_{n}

设在给定条件下(第 i 个训练样本的向量X)   y_{i}=1的概率为:

逻辑回归梯度下降算法是一种常用的优化算法,用于求解逻辑回归模型的参数。梯度下降法是一种阶优化方法,可以用于求解无约束优化问题。在逻辑回归中,我们通过最小化目标函数J(θ)来找到最佳的模型参数θ。梯度下降法的公式可以用于更新参数θ,从而逐步逼近最小值。 逻辑回归梯度下降法包括批量梯度下降法和随机梯度下降法。批量梯度下降法在每一次迭代中都使用训练集的所有样本来计算梯度,并更新参数θ。随机梯度下降法在每一次迭代中只使用训练集中的部分样本来计算梯度,并更新参数θ。相比之下,随机梯度下降法的计算效率更高,但可能会导致模型参数的不稳定。 逻辑回归梯度下降算法的目标是最小化目标函数J(θ),对于二分类逻辑回归,可以使用sigmoid函数将线性模型的输出转化为概率值。然后使用最大似然估计的方法,通过最小化负对数似然函数来求解最佳的模型参数θ。 这个过程中,我们需要计算目标函数J(θ)关于参数θ的梯度,然后使用梯度的反方向进行参数的更新。重复这个过程,直到达到收敛条件或达到最大迭代次数。 总结来说,逻辑回归梯度下降算法是一种常用的优化算法,用于求解逻辑回归模型的参数。它通过最小化目标函数J(θ),利用梯度的反方向逐步逼近最小值。批量梯度下降法和随机梯度下降法是两种常见的实现方式。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* [逻辑回归梯度下降法](https://blog.csdn.net/shuqing1996/article/details/88081786)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 33.333333333333336%"] - *2* [[飞桨机器学习]逻辑回归(六种梯度下降方式)](https://blog.csdn.net/chenqianhe2/article/details/115009758)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 33.333333333333336%"] - *3* [A simple BP Neural Network example 一个简单的运用了梯度下降算法的神经网络例子.zip](https://download.csdn.net/download/qq_35831906/88253004)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 33.333333333333336%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值