软考高级成本类计算公式

一、名称解释1

PV :Planed Value 预算成本;计划值

AC :Actual Cost 实际成本

EV :Earn value 预算成本;净值

二、公式(s:schedule进度  c:cost成本)

偏差:减法是与0比较,除法是与1比较

进度偏差 SV=EV-PV (SV>0:进度超前 SV<0:进度落后)

成本偏差 CV=EV-AC  (CV>0:成本节约 CV<0:成本超支)

进度绩效指数 SPI=EV/PV(SPI>1:进度超前 SPI=1:与预算进度相符合 SPI<1:进度落后)

成本绩效指数 CPI=EV/AC(CPI>1:成本节约资金使用效率高 CPI=1:资金使用效率一般 CPI<1:成本超支资金使用效率低)

三、名词解释2

BAC 总预算

ETC 完工尚需估算

EAC 完工估算

VAC 完工偏差

四、公式2

(1)典型情况(已经确定工期延误,无法弥补)

ETC=(BAC-EV)/CPI

EAC=ETC+AC

VAC=BAC-EAC

(2)非典型情况(可以调整弥补工期)

ETC=BAC-EV

EAC=ETC+AC

VAC=BAC-EAC

内容概要:本文详细介绍了OCR(光学字符识别)技术,从定义出发,阐述了它是如何让计算机“看懂”图片里的文字,通过扫描仪等设备读取文本图像并转换成计算机可编辑的文本。文中列举了OCR在办公、图书馆、交通、金融等领域的广泛应用实例,如快速处理纸质文件、车牌识别、银行支票处理等。接着回顾了OCR的发展历程,从20世纪初的萌芽到如今基于深度学习的智能化时代,期间经历了从简单字符识别到复杂场景下的高精度识别的演变。技术层面,深入解析了OCR的关键技术环节,包括图像预处理、文本检测、文本识别和后处理,每个环节都采用了先进的算法和技术手段以确保识别的准确性。最后探讨了OCR在未来可能面临的挑战,如复杂场景下的识别准确率、特殊字体和语言的支持以及数据安全问题,并展望了其人工智能融合后的广阔前景。 适合人群:对OCR技术感兴趣的技术爱好者、开发者以及希望了解该技术在各行业应用的专业人士。 使用场景及目标:①帮助用户理解OCR技术的基本原理和发展历程;②展示OCR在多个行业中的具体应用场景,如办公自动化、金融票据处理、医疗病历管理等;③探讨OCR技术面临的挑战及未来发展方向,为相关从业者提供参考。 其他说明:本文不仅涵盖了OCR技术的基础知识,还深入探讨了其背后的技术细节和发展趋势,对于想要深入了解OCR技术及其应用的人来说是非常有价值的参考资料。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值