积分变换知识点整理1-4

卷积与相关函数

卷积

若已知函数 f 1 ( t ) f_1(t) f1(t) f 2 ( t ) f_2(t) f2(t),则积分
∫ − ∞ + ∞ f 1 ( τ ) f 2 ( t − τ ) d τ \int_{-\infty}^{+\infty}f_1(\tau)f_2(t-\tau)d\tau +f1(τ)f2(tτ)dτ
称为函数 f 1 ( t ) f_1(t) f1(t) f 2 ( t ) f_2(t) f2(t)卷积,记为 f 1 ( t ) ∗ f 2 ( t ) f_1(t)*f_2(t) f1(t)f2(t),即
∫ − ∞ + ∞ f 1 ( τ ) f 2 ( t − τ ) d τ = f 1 ( t ) ∗ f 2 ( t ) \int_{-\infty}^{+\infty}f_1(\tau)f_2(t-\tau)d\tau=f_1(t)*f_2(t) +f1(τ)f2(tτ)dτ=f1(t)f2(t)
卷积运算满足:

  1. 交换律 f 1 ( t ) ∗ f 2 ( t ) = f 2 ( t ) ∗ f 1 ( t ) f_1(t)*f_2(t)=f_2(t)*f_1(t) f1(t)f2(t)=f2(t)f1(t)
  2. 结合律 f 1 ( t ) ∗ [ f 2 ( t ) ∗ f 3 ( t ) ] = [ f 1 ( t ) ∗ f 2 ( t ) ] ∗ f 3 ( t ) f_1(t)*[f_2(t)*f_3(t)]=[f_1(t)*f_2(t)]*f_3(t) f1(t)[f2(t)f3(t)]=[f1(t)f2(t)]f3(t)
  3. 对加法的分配律
    f 1 ( t ) ∗ [ f 2 ( t ) + f 3 ( t ) ] = f 1 ( t ) ∗ f 2 ( t ) + f 1 ( t ) ∗ f 3 ( t ) f_1(t)*[f_2(t)+f_3(t)]=f_1(t)*f_2(t)+f_1(t)*f_3(t) f1(t)[f2(t)+f3(t)]=f1(t)f2(t)+f1(t)f3(t)

基本性质:

  1. 卷积的数乘 a [ f 1 ( t ) ∗ f 2 ( t ) ] = [ a f 1 ( t ) ] ∗ f 2 ( t ) = f 1 ( t ) ∗ [ a f 2 ( t ) ] a[f_1(t)*f_2(t)]=[af_1(t)]*f_2(t)=f_1(t)*[af_2(t)] a[f1(t)f2(t)]=[af1(t)]f2(t)=f1(t)[af2(t)]
  2. 卷积的微分 d d t [ f 1 ( t ) ∗ f 2 ( t ) ] = d d t f 1 ( t ) ∗ f 2 ( t ) = f 1 ( t ) ∗ d d t f 2 ( t ) \frac{d}{dt}[f_1(t)*f_2(t)]=\frac{d}{dt}f_1(t)*f_2(t)=f_1(t)*\frac{d}{dt}f_2(t) dtd[f1(t)f2(t)]=dtdf1(t)f2(t)=f1(t)dtdf2(t)
  3. 卷积的积分 ∫ − ∞ t [ f 1 ( ξ ) ∗ f 2 ( ξ ) ] d ξ = f 1 ( t ) ∗ ∫ − ∞ t f 2 ( ξ ) d ξ = ∫ − ∞ t f 1 ( ξ ) d ξ ∗ f 2 ( t ) \int_{-\infty}^{t}[f_1(\xi)*f_2(\xi)]d\xi=f_1(t)*\int_{-\infty}^{t}f_2(\xi)d\xi=\int_{-\infty}^{t}f_1(\xi)d\xi*f_2(t) t[f1(ξ)f2(ξ)]dξ=f1(t)tf2(ξ)dξ=tf1(ξ)dξf2(t)
  4. 不等式 ∣ f 1 ( t ) ∗ f 2 ( t ) ∣ ≤ ∣ f 1 ( t ) ∣ ∗ ∣ f 2 ( t ) ∣ |f_1(t)*f_2(t)|\leq|f_1(t)|*|f_2(t)| f1(t)f2(t)f1(t)f2(t)

卷积定理

  假定 f 1 ( t ) f_1(t) f1(t) f 2 ( t ) f_2(t) f2(t)都满足Fourier积分定理中的条件,且 F [ f 1 ( t ) ] = F 1 ( ω ) \mathscr{F}[f_1(t)]=F_1(\omega) F[f1(t)]=F1(ω) F [ f 2 ( t ) ] = F 2 ( ω ) \mathscr{F}[f_2(t)]=F_2(\omega) F[f2(t)]=F2(ω),则
F [ f 1 ( t ) ∗ f 2 ( t ) ] = F 1 ( ω ) ⋅ F 2 ( ω ) \mathscr{F}[f_1(t)*f_2(t)]=F_1(\omega)·F_2(\omega) F[f1(t)f2(t)]=F1(ω)F2(ω) F − 1 [ F 1 ( ω ) ⋅ F 2 ( ω ) ] = f 1 ( t ) ∗ f 2 ( t ) \mathscr{F}^{-1}[F_1(\omega)·F_2(\omega)]=f_1(t)*f_2(t) F1[F1(ω)F2(ω)]=f1(t)f2(t)

相关函数

概念

  对于两个不同的函数 f 1 ( t ) f_1(t) f1(t) f 2 ( t ) f_2(t) f2(t),称积分
∫ − ∞ + ∞ f 1 ( t ) f 2 ( t + τ ) d t \int_{-\infty}^{+\infty}f_1(t)f_2(t+\tau)dt +f1(t)f2(t+τ)dt
为两个函数 f 1 ( t ) f_1(t) f1(t) f 2 ( t ) f_2(t) f2(t)互相关函数,用记号 R 12 ( τ ) R_{12}(\tau) R12(τ)表示,即
R 12 ( τ ) = ∫ − ∞ + ∞ f 1 ( t ) f 2 ( t + τ ) d t R_{12}(\tau)=\int_{-\infty}^{+\infty}f_1(t)f_2(t+\tau)dt R12(τ)=+f1(t)f2(t+τ)dt
而积分
∫ − ∞ + ∞ f 1 ( t + τ ) f 2 ( t ) d t \int_{-\infty}^{+\infty}f_1(t+\tau)f_2(t)dt +f1(t+τ)f2(t)dt
记为 R 21 ( τ ) R_{21}(\tau) R21(τ),即
R 21 ( τ ) = ∫ − ∞ + ∞ f 1 ( t + τ ) f 2 ( t ) d t R_{21}(\tau)=\int_{-\infty}^{+\infty}f_1(t+\tau)f_2(t)dt R21(τ)=+f1(t+τ)f2(t)dt
f 1 ( t ) = f 2 ( t ) = f ( t ) f_1(t)=f_2(t)=f(t) f1(t)=f2(t)=f(t)时,称积分
∫ − ∞ + ∞ f ( t ) f ( t + τ )   d t \int_{-\infty}^{+\infty}f(t)f(t+\tau)\,dt +f(t)f(t+τ)dt
为函数 f ( t ) f(t) f(t)自相关函数(简称相关函数)用记号 R ( τ ) R(\tau) R(τ),即
R ( τ ) = ∫ − ∞ + ∞ f ( t ) f ( t + τ )   d t R(\tau)=\int_{-\infty}^{+\infty}f(t)f(t+\tau)\,dt R(τ)=+f(t)f(t+τ)dt
由定义自相关函数是偶函数,即 R ( τ ) = R ( − τ ) R(\tau)=R(-\tau) R(τ)=R(τ)

相关函数和能量谱密度的关系

S ( ω ) = ∫ − ∞ + ∞ R ( τ ) e − j ω τ d τ S(\omega)=\int_{-\infty}^{+\infty}R(\tau)e^{-j\omega\tau}d\tau S(ω)=+R(τ)ejωτdτ
自相关函数 R ( τ ) R(\tau) R(τ)和能量谱密度函数 S ( ω ) S(\omega) S(ω)构成一个Fourier变换对。
F 1 ( ω ) = F [ f 1 ( t ) ] F_1(\omega)=\mathscr{F}[f_1(t)] F1(ω)=F[f1(t)] F 2 ( ω ) = F [ f 2 ( t ) ] F_2(\omega)=\mathscr{F}[f_2(t)] F2(ω)=F[f2(t)]
根据乘积定理可得
R 12 ( τ ) = 1 2 π ∫ − ∞ + ∞ F 1 ( ω ) ‾ F 2 ( ω ) e j ω τ d ω R_{12}(\tau)=\frac{1}{2\pi}\int_{-\infty}^{+\infty}\overline{F_1(\omega)}F_2(\omega)e^{j\omega\tau}d\omega R12(τ)=2π1+F1(ω)F2(ω)ejωτdω
S 12 ( ω ) = F 1 ( ω ) ‾ F 2 ( ω ) S_{12}(\omega)=\overline{F_1(\omega)}F_2(\omega) S12(ω)=F1(ω)F2(ω)互能量谱密度
S 12 ( ω ) S_{12}(\omega) S12(ω) R 12 ( τ ) R_{12}(\tau) R12(τ)构成一个Fourier变换对
S 21 ( ω ) = S 12 ( ω ) ‾ S_{21}(\omega)=\overline{S_{12}(\omega)} S21(ω)=S12(ω) S 21 ( ω ) = F 1 ( ω ) F 2 ( ω ) ‾ S_{21}(\omega)=F_1(\omega)\overline{F_2(\omega)} S21(ω)=F1(ω)F2(ω)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值