积分变换知识点整理1-2

Fourier 变换

Fourier 变换的概念

定义
  若函数 f ( t ) f(t) f(t) ( − ∞ , + ∞ ) (-\infty,+\infty) (,+)上满足 Fourier 积分定理的条件则称函数
F ( ω ) = ∫ − ∞ + ∞ f ( t ) e − j ω t   d t F(\omega)=\int_{-\infty}^{+\infty}f(t)e^{-j\omega t}\,dt F(ω)=+f(t)ejωtdt
f ( t ) f(t) f(t)Fourier 变换。称函数
f ( t ) = 1 2 π ∫ − ∞ + ∞ F ( ω ) e j ω t   d ω f(t)=\frac{1}{2\pi}\int_{-\infty}^{+\infty}F(\omega)e^{j\omega t}\,d\omega f(t)=2π1+F(ω)ejωtdω
F ( ω ) F(\omega) F(ω)Fourier 逆变换

F ( ω ) = ∫ − ∞ + ∞ f ( t ) e − j ω t   d t F(\omega)=\displaystyle\int_{-\infty}^{+\infty}f(t)e^{-j\omega t}\,dt F(ω)=+f(t)ejωtdt叫做 f ( t ) f(t) f(t)Fourier 变换式,记为 F ( ω ) = F [ f ( t ) ] F(\omega)=\mathscr{F}[f(t)] F(ω)=F[f(t)]
F ( ω ) F(\omega) F(ω)叫做 f ( t ) f(t) f(t)象函数

f ( t ) = 1 2 π ∫ − ∞ + ∞ F ( ω ) e j ω t   d ω f(t)=\displaystyle\frac{1}{2\pi}\int_{-\infty}^{+\infty}F(\omega)e^{j\omega t}\,d\omega f(t)=2π1+F(ω)ejωtdω叫做 F ( ω ) F(\omega) F(ω)Fourier 逆变换式,记为
f ( t ) = F − 1 [ F ( ω ) ] f(t)=\mathscr{F}^{-1}[F(\omega)] f(t)=F1[F(ω)]
f ( t ) f(t) f(t)叫做 F ( ω ) F(\omega) F(ω)象原函数
f ( t ) f(t) f(t)为奇函数时,则 F s ( ω ) = ∫ 0 + ∞ f ( t ) sin ⁡ ω t   d t F_s(\omega)=\int_{0}^{+\infty}f(t)\sin\omega t\,dt Fs(ω)=0+f(t)sinωtdt
叫做 f ( t ) f(t) f(t)Fourier正弦变换式(简称正弦变换)即
F s ( ω ) = F s [ f ( t ) ] F_s(\omega)=\mathscr{F}_s[f(t)] Fs(ω)=Fs[f(t)]
—————————————————————————————————
f ( t ) = 2 π ∫ 0 + ∞ F s ( ω ) sin ⁡ ω t   d ω f(t)=\frac{2}{\pi}\int_{0}^{+\infty}F_s(\omega)\sin\omega t\,d\omega f(t)=π20+Fs(ω)sinωtdω
叫做 F ( ω ) F(\omega) F(ω)Fourier正弦逆变换式(简称正弦逆变换),即
f ( t ) = F s − 1 [ F s ( ω ) ] f(t)=\mathscr{F}^{-1}_s[F_s(\omega)] f(t)=Fs1[Fs(ω)]
—————————————————————————————————
f ( t ) f(t) f(t)为偶函数时,则
F c ( ω ) = ∫ 0 + ∞ f ( t ) cos ⁡ ω t   d t F_c(\omega)=\int_{0}^{+\infty}f(t)\cos\omega t\,dt Fc(ω)=0+f(t)cosωtdt
叫做 f ( t ) f(t) f(t)Fourier余弦变换式(简称余弦变换),即
F c ( ω ) = F c [ f ( t ) ] F_c(\omega)=\mathscr{F}_c[f(t)] Fc(ω)=Fc[f(t)]
—————————————————————————————————
f ( t ) = 2 π ∫ 0 + ∞ F c ( ω ) cos ⁡ ω t   d ω f(t)=\frac{2}{\pi}\int_{0}^{+\infty}F_c(\omega)\cos\omega t\,d\omega f(t)=π20+Fc(ω)cosωtdω
叫做 F ( ω ) F(\omega) F(ω)Fourier正弦逆变换式(简称正弦逆变换),即
f ( t ) = F c − 1 [ F c ( ω ) ] f(t)=\mathscr{F}^{-1}_c[F_c(\omega)] f(t)=Fc1[Fc(ω)]
—————————————————————————————————
f ( t ) f(t) f(t) ( − ∞ , + ∞ ) (-\infty,+\infty) (,+)上有定义,且满足Fourier积分定理的条件,其象函数 F ( ω ) F(\omega) F(ω) F s ( ω ) F_s(\omega) Fs(ω) F c ( ω ) F_c(\omega) Fc(ω)之间的关系满足
f ( t ) f(t) f(t)为奇函数 F ( ω ) = − 2 j F s ( ω ) F(\omega)=-2jF_s(\omega) F(ω)=2jFs(ω)
f ( t ) f(t) f(t)为偶函数时 F ( ω ) = 2 F c ( ω ) F(\omega)=2F_c(\omega) F(ω)=2Fc(ω)
如果 f ( t ) f(t) f(t)只在 ( − ∞ , + ∞ ) (-\infty,+\infty) (,+)上有定义,且满足Fourier 积分定理的条件,则可以通过奇延拓或偶延拓得到 f ( t ) f(t) f(t)的正弦变换或余弦变换

指数衰减函数
f ( t ) = { 0 t < 0 e − β t t ≥ 0 f(t)=\left\{ \begin{array}{rcl} 0 & & {t < 0}\\ e^{-\beta t} & & {t\ge0} \end{array} \right. f(t)={0eβtt<0t0
F ( ω ) = F [ f ( t ) ] = 1 β + j ω F(\omega)=\mathscr{F}[f(t)]=\frac{1}{\beta+j\omega} F(ω)=F[f(t)]=β+jω1

钟形脉冲函数 f ( t ) = A e − β t 2 f(t)=Ae^{-\beta t^2} f(t)=Aeβt2
F ( ω ) = F [ f ( t ) ] = π β A e − ω 2 4 β F(\omega)=\mathscr{F}[f(t)]=\sqrt{\frac{\pi}{\beta}}Ae^{-\frac{\omega^2}{4\beta}} F(ω)=F[f(t)]=βπ Ae4βω2

单位脉冲函数及其Fourier变换

δ \delta δ-函数定义
  对于任何一个无穷次可微的函数 f ( t ) f(t) f(t),如果满足
∫ − ∞ + ∞ δ ( t ) f ( t ) = lim ⁡ ε → 0 ∫ − ∞ + ∞ δ ε ( t ) f ( t )   d t \int_{-\infty}^{+\infty}\delta(t)f(t)=\lim_{\varepsilon\to 0}\int_{-\infty}^{+\infty}\delta_\varepsilon(t)f(t)\,dt +δ(t)f(t)=ε0lim+δε(t)f(t)dt
其中 f ( t ) = { 0 t < 0 1 ε 0 ≤ t ≤ ε 0 t > ε f(t)=\left\{ \begin{array}{rcl} 0 & & {t < 0}\\ \\ \displaystyle\frac{1}{\varepsilon} & & {0 \leq t\leq\varepsilon}\\ \\ 0 & & {t>\varepsilon} \end{array} \right. f(t)=0ε10t<00tεt>ε
则称 δ ε ( t ) \delta_\varepsilon(t) δε(t)的弱极限为 δ \delta δ-函数,记为 δ ( t ) \delta(t) δ(t),即 δ ε ( t ) → ε → 0 弱 δ ( t ) \delta\varepsilon(t)\xrightarrow[\varepsilon\to 0]{弱}\delta(t) δε(t) ε0δ(t)
或简记为 lim ⁡ δ → 0 δ ε ( t ) = δ ( t ) \lim\limits_{\delta\to 0}\delta_\varepsilon(t)=\delta(t) δ0limδε(t)=δ(t)
由定义,取 f ( t ) = 1 f(t)=1 f(t)=1 ∫ − ∞ + ∞ δ ( t )   d t = 1 \int_{-\infty}^{+\infty}\delta(t)\,dt=1 +δ(t)dt=1
工程上常把 δ \delta δ-函数称为单位脉冲函数

δ \delta δ函数性质

  1. 筛选性质
      若 f ( t ) f(t) f(t)为无穷次可微函数,则有
    ∫ − ∞ + ∞ δ ( t ) f ( t )   d t = f ( 0 ) \int_{-\infty}^{+\infty}\delta(t)f(t)\,dt=f(0) +δ(t)f(t)dt=f(0)
    一般还成立着
    ∫ − ∞ + ∞ δ ( t − t 0 ) f ( t )   d t = f ( t 0 ) \int_{-\infty}^{+\infty}\delta(t-t_0)f(t)\,dt=f(t_0) +δ(tt0)f(t)dt=f(t0)
  2. δ \delta δ-函数是偶函数,即 δ ( t ) = δ ( − t ) \delta(t)=\delta(-t) δ(t)=δ(t)
  3. δ \delta δ-函数是单位阶跃函数的导数,即
    ∫ − ∞ t δ ( τ )   d τ = u ( t )      d d t u ( t ) = δ ( t ) \int_{-\infty}^{t}\delta(\tau)\,d\tau=u(t)\,\,\,\,\frac{d}{dt}u(t)=\delta(t) tδ(τ)dτ=u(t)dtdu(t)=δ(t)
    其中 u ( t ) = { 0 t < 0 1 t > 0 u(t)=\left\{ \begin{array}{rcl} 0 & & {t < 0}\\ 1 & & {t>0} \end{array} \right. u(t)={01t<0t>0称为单位阶跃函数
    3.若 a a a为非零实常数,则 δ ( a t ) = 1 ∣ a ∣ δ ( t ) \delta(at)=\displaystyle\frac{1}{|a|}\delta(t) δ(at)=a1δ(t)
    4.若 f ( t ) f(t) f(t)为无穷次可微的函数,则有
    ∫ − ∞ + ∞ δ ( n ) ( t − t 0 ) f ( t )   d t = ( − 1 ) n f ( n ) ( t 0 ) \int_{-\infty}^{+\infty}\delta^{(n)}(t-t_0)f(t)\,dt=(-1)^nf^{(n)}(t_0) +δ(n)(tt0)f(t)dt=(1)nf(n)(t0)
    δ \delta δ-函数的Fourier变换
    F ( ω ) = F [ δ ( t ) ] = ∫ − ∞ + ∞ δ ( t ) e − j ω t d t = e − j ω t ∣ t = 0 = 1 F(\omega)=\mathscr{F}[\delta(t)]=\int_{-\infty}^{+\infty}\delta(t)e^{-j\omega t}dt=e^{-j\omega t}\Big|_{t=0}=1 F(ω)=F[δ(t)]=+δ(t)ejωtdt=ejωtt=0=1
    同理
    F [ δ ( t − t 0 ) ] = e − j ω t 0 \mathscr{F}[\delta(t-t_0)]=e^{-j\omega t_0} F[δ(tt0)]=ejωt0

单位阶跃函数Fourier变换
F [ u ( t ) ] = 1 j ω + π δ ( ω ) \mathscr{F}[u(t)]=\frac{1}{j\omega}+\pi\delta(\omega) F[u(t)]=jω1+πδ(ω)
正弦函数 f ( t ) = s i n ω 0 t f(t)=sin\omega_0 t f(t)=sinω0t的Fourier变换
F [ f ( t ) ] = j π [ δ ( ω + ω 0 ) − δ ( ω − ω 0 ) ] \mathscr{F}[f(t)]=j\pi[\delta(\omega+\omega_0)-\delta(\omega-\omega_0)] F[f(t)]=jπ[δ(ω+ω0)δ(ωω0)]
g ( t ) g(t) g(t)为一连续函数,则
g ( t ) δ ( t − t 0 ) = g ( t 0 ) δ ( t − t 0 ) g(t)\delta(t-t_0)=g(t_0)\delta(t-t_0) g(t)δ(tt0)=g(t0)δ(tt0)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值