Fourier 变换
Fourier 变换的概念
定义
若函数
f
(
t
)
f(t)
f(t)在
(
−
∞
,
+
∞
)
(-\infty,+\infty)
(−∞,+∞)上满足 Fourier 积分定理的条件则称函数
F
(
ω
)
=
∫
−
∞
+
∞
f
(
t
)
e
−
j
ω
t
d
t
F(\omega)=\int_{-\infty}^{+\infty}f(t)e^{-j\omega t}\,dt
F(ω)=∫−∞+∞f(t)e−jωtdt
为
f
(
t
)
f(t)
f(t)的Fourier 变换。称函数
f
(
t
)
=
1
2
π
∫
−
∞
+
∞
F
(
ω
)
e
j
ω
t
d
ω
f(t)=\frac{1}{2\pi}\int_{-\infty}^{+\infty}F(\omega)e^{j\omega t}\,d\omega
f(t)=2π1∫−∞+∞F(ω)ejωtdω
为
F
(
ω
)
F(\omega)
F(ω)的Fourier 逆变换
F
(
ω
)
=
∫
−
∞
+
∞
f
(
t
)
e
−
j
ω
t
d
t
F(\omega)=\displaystyle\int_{-\infty}^{+\infty}f(t)e^{-j\omega t}\,dt
F(ω)=∫−∞+∞f(t)e−jωtdt叫做
f
(
t
)
f(t)
f(t)的Fourier 变换式,记为
F
(
ω
)
=
F
[
f
(
t
)
]
F(\omega)=\mathscr{F}[f(t)]
F(ω)=F[f(t)]
F
(
ω
)
F(\omega)
F(ω)叫做
f
(
t
)
f(t)
f(t)的象函数
f
(
t
)
=
1
2
π
∫
−
∞
+
∞
F
(
ω
)
e
j
ω
t
d
ω
f(t)=\displaystyle\frac{1}{2\pi}\int_{-\infty}^{+\infty}F(\omega)e^{j\omega t}\,d\omega
f(t)=2π1∫−∞+∞F(ω)ejωtdω叫做
F
(
ω
)
F(\omega)
F(ω)的Fourier 逆变换式,记为
f
(
t
)
=
F
−
1
[
F
(
ω
)
]
f(t)=\mathscr{F}^{-1}[F(\omega)]
f(t)=F−1[F(ω)]
f
(
t
)
f(t)
f(t)叫做
F
(
ω
)
F(\omega)
F(ω)的象原函数
当
f
(
t
)
f(t)
f(t)为奇函数时,则
F
s
(
ω
)
=
∫
0
+
∞
f
(
t
)
sin
ω
t
d
t
F_s(\omega)=\int_{0}^{+\infty}f(t)\sin\omega t\,dt
Fs(ω)=∫0+∞f(t)sinωtdt
叫做
f
(
t
)
f(t)
f(t)的Fourier正弦变换式(简称正弦变换)即
F
s
(
ω
)
=
F
s
[
f
(
t
)
]
F_s(\omega)=\mathscr{F}_s[f(t)]
Fs(ω)=Fs[f(t)]
—————————————————————————————————
f
(
t
)
=
2
π
∫
0
+
∞
F
s
(
ω
)
sin
ω
t
d
ω
f(t)=\frac{2}{\pi}\int_{0}^{+\infty}F_s(\omega)\sin\omega t\,d\omega
f(t)=π2∫0+∞Fs(ω)sinωtdω
叫做
F
(
ω
)
F(\omega)
F(ω)的Fourier正弦逆变换式(简称正弦逆变换),即
f
(
t
)
=
F
s
−
1
[
F
s
(
ω
)
]
f(t)=\mathscr{F}^{-1}_s[F_s(\omega)]
f(t)=Fs−1[Fs(ω)]
—————————————————————————————————
当
f
(
t
)
f(t)
f(t)为偶函数时,则
F
c
(
ω
)
=
∫
0
+
∞
f
(
t
)
cos
ω
t
d
t
F_c(\omega)=\int_{0}^{+\infty}f(t)\cos\omega t\,dt
Fc(ω)=∫0+∞f(t)cosωtdt
叫做
f
(
t
)
f(t)
f(t)的Fourier余弦变换式(简称余弦变换),即
F
c
(
ω
)
=
F
c
[
f
(
t
)
]
F_c(\omega)=\mathscr{F}_c[f(t)]
Fc(ω)=Fc[f(t)]
—————————————————————————————————
f
(
t
)
=
2
π
∫
0
+
∞
F
c
(
ω
)
cos
ω
t
d
ω
f(t)=\frac{2}{\pi}\int_{0}^{+\infty}F_c(\omega)\cos\omega t\,d\omega
f(t)=π2∫0+∞Fc(ω)cosωtdω
叫做
F
(
ω
)
F(\omega)
F(ω)的Fourier正弦逆变换式(简称正弦逆变换),即
f
(
t
)
=
F
c
−
1
[
F
c
(
ω
)
]
f(t)=\mathscr{F}^{-1}_c[F_c(\omega)]
f(t)=Fc−1[Fc(ω)]
—————————————————————————————————
若
f
(
t
)
f(t)
f(t)在
(
−
∞
,
+
∞
)
(-\infty,+\infty)
(−∞,+∞)上有定义,且满足Fourier积分定理的条件,其象函数
F
(
ω
)
F(\omega)
F(ω),
F
s
(
ω
)
F_s(\omega)
Fs(ω)及
F
c
(
ω
)
F_c(\omega)
Fc(ω)之间的关系满足
当
f
(
t
)
f(t)
f(t)为奇函数
F
(
ω
)
=
−
2
j
F
s
(
ω
)
F(\omega)=-2jF_s(\omega)
F(ω)=−2jFs(ω)
当
f
(
t
)
f(t)
f(t)为偶函数时
F
(
ω
)
=
2
F
c
(
ω
)
F(\omega)=2F_c(\omega)
F(ω)=2Fc(ω)
如果
f
(
t
)
f(t)
f(t)只在
(
−
∞
,
+
∞
)
(-\infty,+\infty)
(−∞,+∞)上有定义,且满足Fourier 积分定理的条件,则可以通过奇延拓或偶延拓得到
f
(
t
)
f(t)
f(t)的正弦变换或余弦变换
指数衰减函数
f
(
t
)
=
{
0
t
<
0
e
−
β
t
t
≥
0
f(t)=\left\{ \begin{array}{rcl} 0 & & {t < 0}\\ e^{-\beta t} & & {t\ge0} \end{array} \right.
f(t)={0e−βtt<0t≥0
F
(
ω
)
=
F
[
f
(
t
)
]
=
1
β
+
j
ω
F(\omega)=\mathscr{F}[f(t)]=\frac{1}{\beta+j\omega}
F(ω)=F[f(t)]=β+jω1
钟形脉冲函数
f
(
t
)
=
A
e
−
β
t
2
f(t)=Ae^{-\beta t^2}
f(t)=Ae−βt2
F
(
ω
)
=
F
[
f
(
t
)
]
=
π
β
A
e
−
ω
2
4
β
F(\omega)=\mathscr{F}[f(t)]=\sqrt{\frac{\pi}{\beta}}Ae^{-\frac{\omega^2}{4\beta}}
F(ω)=F[f(t)]=βπAe−4βω2
单位脉冲函数及其Fourier变换
δ
\delta
δ-函数定义
对于任何一个无穷次可微的函数
f
(
t
)
f(t)
f(t),如果满足
∫
−
∞
+
∞
δ
(
t
)
f
(
t
)
=
lim
ε
→
0
∫
−
∞
+
∞
δ
ε
(
t
)
f
(
t
)
d
t
\int_{-\infty}^{+\infty}\delta(t)f(t)=\lim_{\varepsilon\to 0}\int_{-\infty}^{+\infty}\delta_\varepsilon(t)f(t)\,dt
∫−∞+∞δ(t)f(t)=ε→0lim∫−∞+∞δε(t)f(t)dt
其中
f
(
t
)
=
{
0
t
<
0
1
ε
0
≤
t
≤
ε
0
t
>
ε
f(t)=\left\{ \begin{array}{rcl} 0 & & {t < 0}\\ \\ \displaystyle\frac{1}{\varepsilon} & & {0 \leq t\leq\varepsilon}\\ \\ 0 & & {t>\varepsilon} \end{array} \right.
f(t)=⎩⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎧0ε10t<00≤t≤εt>ε
则称
δ
ε
(
t
)
\delta_\varepsilon(t)
δε(t)的弱极限为
δ
\delta
δ-函数,记为
δ
(
t
)
\delta(t)
δ(t),即
δ
ε
(
t
)
→
ε
→
0
弱
δ
(
t
)
\delta\varepsilon(t)\xrightarrow[\varepsilon\to 0]{弱}\delta(t)
δε(t)弱ε→0δ(t)
或简记为
lim
δ
→
0
δ
ε
(
t
)
=
δ
(
t
)
\lim\limits_{\delta\to 0}\delta_\varepsilon(t)=\delta(t)
δ→0limδε(t)=δ(t)
由定义,取
f
(
t
)
=
1
f(t)=1
f(t)=1有
∫
−
∞
+
∞
δ
(
t
)
d
t
=
1
\int_{-\infty}^{+\infty}\delta(t)\,dt=1
∫−∞+∞δ(t)dt=1
工程上常把
δ
\delta
δ-函数称为单位脉冲函数。
δ \delta δ函数性质
- 筛选性质
若 f ( t ) f(t) f(t)为无穷次可微函数,则有
∫ − ∞ + ∞ δ ( t ) f ( t ) d t = f ( 0 ) \int_{-\infty}^{+\infty}\delta(t)f(t)\,dt=f(0) ∫−∞+∞δ(t)f(t)dt=f(0)
一般还成立着
∫ − ∞ + ∞ δ ( t − t 0 ) f ( t ) d t = f ( t 0 ) \int_{-\infty}^{+\infty}\delta(t-t_0)f(t)\,dt=f(t_0) ∫−∞+∞δ(t−t0)f(t)dt=f(t0) - δ \delta δ-函数是偶函数,即 δ ( t ) = δ ( − t ) \delta(t)=\delta(-t) δ(t)=δ(−t)
-
δ
\delta
δ-函数是单位阶跃函数的导数,即
∫ − ∞ t δ ( τ ) d τ = u ( t ) d d t u ( t ) = δ ( t ) \int_{-\infty}^{t}\delta(\tau)\,d\tau=u(t)\,\,\,\,\frac{d}{dt}u(t)=\delta(t) ∫−∞tδ(τ)dτ=u(t)dtdu(t)=δ(t)
其中 u ( t ) = { 0 t < 0 1 t > 0 u(t)=\left\{ \begin{array}{rcl} 0 & & {t < 0}\\ 1 & & {t>0} \end{array} \right. u(t)={01t<0t>0称为单位阶跃函数。
3.若 a a a为非零实常数,则 δ ( a t ) = 1 ∣ a ∣ δ ( t ) \delta(at)=\displaystyle\frac{1}{|a|}\delta(t) δ(at)=∣a∣1δ(t)
4.若 f ( t ) f(t) f(t)为无穷次可微的函数,则有
∫ − ∞ + ∞ δ ( n ) ( t − t 0 ) f ( t ) d t = ( − 1 ) n f ( n ) ( t 0 ) \int_{-\infty}^{+\infty}\delta^{(n)}(t-t_0)f(t)\,dt=(-1)^nf^{(n)}(t_0) ∫−∞+∞δ(n)(t−t0)f(t)dt=(−1)nf(n)(t0)
δ \delta δ-函数的Fourier变换
F ( ω ) = F [ δ ( t ) ] = ∫ − ∞ + ∞ δ ( t ) e − j ω t d t = e − j ω t ∣ t = 0 = 1 F(\omega)=\mathscr{F}[\delta(t)]=\int_{-\infty}^{+\infty}\delta(t)e^{-j\omega t}dt=e^{-j\omega t}\Big|_{t=0}=1 F(ω)=F[δ(t)]=∫−∞+∞δ(t)e−jωtdt=e−jωt∣∣∣t=0=1
同理
F [ δ ( t − t 0 ) ] = e − j ω t 0 \mathscr{F}[\delta(t-t_0)]=e^{-j\omega t_0} F[δ(t−t0)]=e−jωt0
单位阶跃函数Fourier变换
F
[
u
(
t
)
]
=
1
j
ω
+
π
δ
(
ω
)
\mathscr{F}[u(t)]=\frac{1}{j\omega}+\pi\delta(\omega)
F[u(t)]=jω1+πδ(ω)
正弦函数
f
(
t
)
=
s
i
n
ω
0
t
f(t)=sin\omega_0 t
f(t)=sinω0t的Fourier变换
F
[
f
(
t
)
]
=
j
π
[
δ
(
ω
+
ω
0
)
−
δ
(
ω
−
ω
0
)
]
\mathscr{F}[f(t)]=j\pi[\delta(\omega+\omega_0)-\delta(\omega-\omega_0)]
F[f(t)]=jπ[δ(ω+ω0)−δ(ω−ω0)]
若
g
(
t
)
g(t)
g(t)为一连续函数,则
g
(
t
)
δ
(
t
−
t
0
)
=
g
(
t
0
)
δ
(
t
−
t
0
)
g(t)\delta(t-t_0)=g(t_0)\delta(t-t_0)
g(t)δ(t−t0)=g(t0)δ(t−t0)