【积分变换】积分变换常用公式定理与方法

欢迎纠错


#傅里叶变换

##傅里叶级数

https://blog.csdn.net/lafea/article/details/115756741

##基本性质

F ( ω ) = ∫ − ∞ + ∞ f ( τ ) e − j ω τ d τ = F [ f ( t ) ]   f ( t ) = 1 2 π ∫ − ∞ + ∞ F ( ω ) e j ω t d ω = F − 1 [ F ( ω ) ] F(\omega)=\int_{-\infty}^{+\infty}f(\tau)e^{-j\omega\tau}d\tau=\mathcal{F}[f(t)]\\\ \\ f(t)= \frac 1 {2\pi} \int_{-\infty}^{+\infty} F(\omega)e^{j\omega t}d\omega=\mathcal F^{-1}[F(\omega)] F(ω)=+f(τ)ejωτdτ=F[f(t)] f(t)=2π1+F(ω)ejωtdω=F1[F(ω)]
1. 线 性 性 质 :   F [ α f 1 ( t ) + β f 2 ( t ) ] = α F 1 ( ω ) + β F 2 ( ω )   2. 位 移 性 质 :   F [ f ( t ± t 0 ) ] = e ± j ω t 0 F ( ω )   F [ e ± j ω t 0 f ( t ) ] = F ( ω ∓ ω 0 ) 1.线性性质:\\\ \\ \mathcal{F}[\alpha f_1(t)+\beta f_2(t)]=\alpha F_1(\omega)+\beta F_2(\omega)\\\ \\ 2.位移性质:\\\ \\ \mathcal{F}[f(t\pm t_0)]=e^{\pm j\omega t_0} F(\omega)\\\ \\ \mathcal{F}[e^{\pm j\omega t_0}f(t)]=F(\omega\mp\omega_0) 1.线 F[αf1(t)+βf2(t)]=αF1(ω)+βF2(ω) 2. F[f(t±t0)]=e±jωt0F(ω) F[e±jωt0f(t)]=F(ωω0)
3. 微 分 性 质   F [ f ( n ) ( t ) ] = ( j ω ) n F ( ω )   F [ t f ( t ) ] = j d F ( ω ) d ω   F [ t n f ( t ) ] = 1 ( − j ) n d n F ( ω ) d ω n   4. 积 分 性 质 :   F [ g ( t ) ] = 1 j ω F ( ω )   3.微分性质\\\ \\ \mathcal{F}[f^{(n)}(t)]=(j\omega)^n F(\omega)\\\ \\ \mathcal{F}[tf(t)]=j\frac{dF(\omega)}{d\omega}\\\ \\ \mathcal{F}[t^nf(t)]=\frac{1}{(-j)^n}\frac{d^nF(\omega)}{d\omega^n}\\\ \\ 4.积分性质:\\\ \\ \mathcal{F}[g(t)]=\frac{1}{j\omega}F(\omega)\\\ \\ 3. F[f(n)(t)]=(jω)nF(ω) F[tf(t)]=jdωdF(ω) F[tnf(t)]=(j)n1dωndnF(ω) 4. F[g(t)]=jω1F(ω) 
5. 相 似 性 质 :   F [ f ( a t ) ] = 1 ∣ a ∣ F ( ω a )   5.相似性质:\\\ \\ \mathcal{F}[f(at)]=\frac{1}{|a|}F(\frac \omega a)\\\ \\ 5. F[f(at)]=a1F(aω) 

## d r a c − d e l t a drac-delta dracdelta函数(单位冲激函数)

单 位 阶 跃 函 数 u ( t ) 的 导 数 为 δ ( t )   筛 选 性 : ∫ − ∞ + ∞ δ ( t − t 0 ) f ( t ) d t = f ( t 0 )   F [ δ ( t − t 0 ) ] = e − j ω t 0   F [ u ( t ) ] = 1 j ω + π δ ( ω )   f ( t ) δ ( t ) = f ( 0 ) δ ( t ) 单位阶跃函数u(t)的导数为\delta(t)\\\ \\ 筛选性: \int_{-\infty}^{+\infty}\delta(t-t_0)f(t)dt=f(t_0)\\\ \\ \mathcal F[\delta(t-t_0)]=e^{-j\omega t_0}\\\ \\ \mathcal F[u(t)]=\frac 1 {j\omega} +\pi\delta(\omega)\\\ \\ f(t)\delta(t)=f(0)\delta(t) u(t)δ(t) +δ(tt0)f(t)dt=f(t0) F[δ(tt0)]=ejωt0 F[u(t)]=jω1+πδ(ω) f(t)δ(t)=f(0)δ(t)
c h a i n : 1 2 π ⇒ F δ ( t ) ⇒ F 1 ⇒ F 2 π δ ( t ) chain:\frac 1 {2\pi} \stackrel{\mathcal F}\Rightarrow \delta{(t)} \stackrel{\mathcal F}\Rightarrow 1 \stackrel{\mathcal F}\Rightarrow2\pi\delta(t) chain:2π1Fδ(t)F1F2πδ(t)

##卷积

f 1 ( t ) ∗ f 2 ( t ) = ∫ − ∞ + ∞ f 1 ( τ ) f 2 ( t − τ ) d τ   交 换 律 : f 1 ∗ f 2 = f 2 ∗ f 1   结 合 律 : f 1 ∗ ( f 2 ∗ f 3 ) = ( f 1 ∗ f 2 ) ∗ f 3   分 配 律 : f 1 ∗ ( f 2 + f 3 ) = f 1 ∗ f 2 + f 1 ∗ f 3   f ( t ) ∗ δ ( t ) = f ( t )   a [ f 1 ∗ f 2 ] = [ a f 1 ] ∗ f 2   d [ f 1 ∗ f 2 ] d t = d f 1 d t ∗ f 2 f_1(t)*f_2(t)=\int_{-\infty}^{+\infty}f_1(\tau)f_2(t-\tau)d\tau\\\ \\ 交换律:f_1*f_2=f_2*f_1\\\ \\ 结合律:f_1*(f_2*f_3)=(f_1*f_2)*f_3\\\ \\ 分配律:f_1*(f_2+f_3)=f_1*f_2+f_1*f_3\\\ \\ f(t)*\delta(t)=f(t)\\\ \\ a[f_1*f_2]=[af_1]*f_2\\\ \\ \frac{d[f_1*f_2]}{dt}=\frac{df_1}{dt}*f_2 f1(t)f2(t)=+f1(τ)f2(tτ)dτ f1f2=f2f1 f1(f2f3)=(f1f2)f3 f1(f2+f3)=f1f2+f1f3 f(t)δ(t)=f(t) a[f1f2]=[af1]f2 dtd[f1f2]=dtdf1f2
卷 积 定 理 :   F [ f 1 ∗ f 2 ] = F 1 ( ω ) ⋅ F 2 ( ω )     F [ f 1 ⋅ f 2 ] = 1 2 π F 1 ( ω ) ∗ F 2 ( ω )   f ( t ) ∗ δ ( t − t 0 ) = f ( t − t 0 ) 卷积定理:\\\ \\ \mathcal F[f_1*f_2]=F_1(\omega)\cdot F_2(\omega)\\\ \\\ \mathcal F[f_1\cdot f_2]=\frac 1 {2\pi}F_1(\omega) * F_2(\omega)\\\ \\ f(t)*\delta(t-t_0)=f(t-t_0)  F[f1f2]=F1(ω)F2(ω)  F[f1f2]=2π1F1(ω)F2(ω) f(t)δ(tt0)=f(tt0)

# L a p l a c e Laplace Laplace变换

##基本性质

F ( s ) = ∫ 0 + ∞ f ( τ ) e − s τ d τ = L [ f ( t ) ]   f ( t ) = 1 2 π j ∫ β − j ∞ β + j ∞ F ( s ) e s t d s = L − 1 [ F ( s ) ] F(s)=\int_{0}^{+\infty}f(\tau)e^{-s\tau}d\tau=\mathcal{L}[f(t)]\\\ \\ f(t)= \frac 1 {2\pi j} \int_{\beta-j\infty}^{\beta+j\infty} F(s)e^{st}ds=\mathcal L^{-1}[F(s)] F(s)=0+f(τ)esτdτ=L[f(t)] f(t)=2πj1βjβ+jF(s)estds=L1[F(s)]

1. 线 性 性 质 :   L [ α f 1 ( t ) + β f 2 ( t ) ] = α F 1 ( s ) + β F 2 ( s )   2. 位 移 性 质 :   L [ e ± a t f ( t ) ] = F ( s ∓ a )   3. 延 迟 性 质 :   L [ f ( t − t 0 ) ] = e − s t 0 F ( s )   L − 1 [ e − s t 0 F ( s ) ] = f ( t − t 0 ) ⋅ u ( t − t 0 ) 1.线性性质:\\\ \\ \mathcal{L}[\alpha f_1(t)+\beta f_2(t)]=\alpha F_1(s)+\beta F_2(s)\\\ \\ 2.位移性质:\\\ \\ \mathcal L[e^{\pm at}f (t)]=F(s\mp a)\\\ \\ 3.延迟性质:\\\ \\ \mathcal L[f(t-t_0)]=e^{-st_0}F(s)\\\ \\ \mathcal L^{-1}[e^{-st_0}F(s)]=f(t-t_0)\cdot u(t-t_0) 1.线 L[αf1(t)+βf2(t)]=αF1(s)+βF2(s) 2. L[e±atf(t)]=F(sa) 3. L[f(tt0)]=est0F(s) L1[est0F(s)]=f(tt0)u(tt0)

4. 微 分 性 质   L [ f ′ ( t ) ] = s F ( s ) − f ( 0 )   L [ f ′ ′ ( t ) ] = s 2 F ( s ) − s f ( 0 ) − f ′ ( 0 )   L [ f ( n ) ( t ) ] = s n F ( s ) − s n − 1 f ( 0 ) − s n − 2 f ′ ( 0 ) − ⋯ − f ( n − 1 ) ( 0 )   L [ t f ( t ) ] = − F ′ ( s )   L [ t n f ( t ) ] = ( − 1 ) n F ( n ) ( s )   L [ t f ′ ( t ) ] = − F ( s ) − s F ′ ( s )   L [ t f ′ ′ ( t ) ] = − ( 2 s F ( s ) + s 2 F ′ ( s ) − f ( 0 ) ) 4.微分性质\\\ \\ \mathcal L[f'(t)]=sF(s)-f(0)\\\ \\ \mathcal L[f''(t)]=s^2F(s)-sf(0)-f'(0)\\\ \\ \mathcal L[f^{(n)}(t)]=s^nF(s)-s^{n-1}f(0)-s^{n-2}f'(0)-\cdots-f^{(n-1)}(0)\\\ \\ \mathcal L [tf(t)] =-F'(s)\\\ \\ \mathcal L[t^nf(t)]=(-1) ^nF^{(n)}(s)\\\ \\ \mathcal L[tf'(t)]=-F(s)-sF'(s)\\\ \\ \mathcal L[tf''(t)]=-(2sF(s)+s^2F'(s)-f(0)) 4. L[f(t)]=sF(s)f(0) L[f(t)]=s2F(s)sf(0)f(0) L[f(n)(t)]=snF(s)sn1f(0)sn2f(0)f(n1)(0) L[tf(t)]=F(s) L[tnf(t)]=(1)nF(n)(s) L[tf(t)]=F(s)sF(s) L[tf(t)]=(2sF(s)+s2F(s)f(0))
5. 积 分 性 质 :   L [ ∫ 0 t f ( t ) d t ] = 1 s F ( s )   L [ ∫ 0 t ∫ 0 t ∫ 0 t ⋯ n   t i m e s f ( t ) d t ] = 1 s n F ( s )   L [ f ( t ) t ] = ∫ s ∞ F ( s ) d s   ⋆ ∫ 0 + ∞ f ( t ) t e − s t d t = ∫ s ∞ F ( s ) d s 取 s = 0 ∫ 0 + ∞ f ( t ) t d t = ∫ 0 ∞ F ( s ) d s 5.积分性质:\\\ \\ \mathcal L[\int_0^tf(t)dt]=\frac 1 s F(s)\\\ \\ \mathcal L[\int_0^t\int_0^t\int_0^t\stackrel{n\space times}\cdots f(t)dt]=\frac 1 {s^n} F(s)\\\ \\ \mathcal L[\frac{f(t)} t]=\int _s^\infty F(s)ds\\\ \\ \star \int_0^{+\infty}\frac{f(t)} t e^{-st}dt=\int_s^\infty F(s) ds \\取s=0\\ \int_0^{+\infty}\frac{f(t)} t dt=\int_0^\infty F(s) ds 5. L[0tf(t)dt]=s1F(s) L[0t0t0tn timesf(t)dt]=sn1F(s) L[tf(t)]=sF(s)ds 0+tf(t)estdt=sF(s)dss=00+tf(t)dt=0F(s)ds

##卷积

卷 积 定 理 :   L [ f 1 ∗ f 2 ] = F 1 ( s ) ⋅ F 2 ( s )     f 1 e a t ∗ f 2 e a t = e a t f 1 ∗ f 2 卷积定理:\\\ \\ \mathcal L[f_1*f_2]=F_1(s)\cdot F_2(s)\\\ \\\ f_1e^{at}*f_2e^{at}=e^{at}f_1*f_2  L[f1f2]=F1(s)F2(s)  f1eatf2eat=eatf1f2

##公式大全

L [ e b t u ( t − a ) ] = e − a ( s − b ) s − b \mathcal L[e^{bt}u(t-a)]=\frac{e^{-a(s-b)}}{s-b} L[ebtu(ta)]=sbea(sb)
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

##求拉氏逆变换

###公式法

直接套用公式 / 化简后套用公式 / 有理分式拆开后套用公式

###留数法

-留数计算规则
f ( t ) = ∑ k = 1 n R e s [ F ( s ) e s t , s k ] f(t)=\sum_{k=1}^n Res[F(s)e^{st}, s_k] f(t)=k=1nRes[F(s)est,sk]
分母要化为首一标准型,s前系数为1

  • 13
    点赞
  • 63
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值