Neural Collaborative Filtering
emm我只是总结分享下论文阅读体验,原创转载翻译好像都不太合适,但是转载翻译还需要授权就选了原创,如果侵权会转成私人可见的。
Addressed Problem
This work addresses the aforementioned research problems by formalizing a neural network modelling approach for collaborative filtering. We focus on implicit feedback, which indirectly reflects users’ preference through behaviours like watching videos, purchasing products and clicking items.
- explicit feedback (i.e., ratings and reviews)
- implicit feedback indirectly reflects users’ preference through behaviours like watching videos, purchasing products and clicking items.
implicit feedback can be tracked automatically and is thus much easier to collect for content providers.
Problem Formulation
M M M: number of users
N N N: number of items
Y ∈ R M ∗ N Y \in \mathbb{R}^{M*N} Y∈RM∗N :user–item interaction matrix.
Here a value of 1 for y u i y_{ui} yui indicates that there is an interaction between user u u u and item i i i; however, it does not mean u u u actually likes i i i. Similarly, a value of 0 does not necessarily mean u u u does not like i i i, it can be that the user is not aware of the item.
Notice: While observed entries at least reflect users’ interest on items, the unobserved entries can be just missing data and there is a natural scarcity of negative feedback.
The recommendation problem with implicit feedback is formulated as the problem of estimating the scores of unobserved entries in Y, which are used for ranking the items.
Goal
Learn y ^ u i = f ( u , i ∣ Θ ) \hat{y}_{ui}=f(u,i|\Theta) y^ui=f(u,i∣Θ)
y ^ u i \hat{y}_{ui}