Neural Collaborative Filtering

该工作提出了一种神经网络模型方法解决协同过滤问题,重点在于利用隐式反馈数据。目标是预测用户与物品之间的交互分数,通过最大化观察到的交互与未观察到的交互之间的边际来优化。矩阵分解作为基础,但神经协同过滤(Neural Collaborative Filtering, NCF)引入了非线性模型以更好地捕捉用户和物品的复杂关系。" 121570397,8755284,深入理解:阴影映射在图形渲染中的应用,"['图形渲染', '阴影计算', '数据结构', '技术美术', '深度学习']
摘要由CSDN通过智能技术生成


emm我只是总结分享下论文阅读体验,原创转载翻译好像都不太合适,但是转载翻译还需要授权就选了原创,如果侵权会转成私人可见的。

Addressed Problem

This work addresses the aforementioned research problems by formalizing a neural network modelling approach for collaborative filtering. We focus on implicit feedback, which indirectly reflects users’ preference through behaviours like watching videos, purchasing products and clicking items.

  • explicit feedback (i.e., ratings and reviews)
  • implicit feedback indirectly reflects users’ preference through behaviours like watching videos, purchasing products and clicking items.

implicit feedback can be tracked automatically and is thus much easier to collect for content providers.

Problem Formulation

M M M: number of users
N N N: number of items
Y ∈ R M ∗ N Y \in \mathbb{R}^{M*N} YRMN :user–item interaction matrix.
在这里插入图片描述
Here a value of 1 for y u i y_{ui} yui indicates that there is an interaction between user u u u and item i i i; however, it does not mean u u u actually likes i i i. Similarly, a value of 0 does not necessarily mean u u u does not like i i i, it can be that the user is not aware of the item.

Notice: While observed entries at least reflect users’ interest on items, the unobserved entries can be just missing data and there is a natural scarcity of negative feedback.

The recommendation problem with implicit feedback is formulated as the problem of estimating the scores of unobserved entries in Y, which are used for ranking the items.

Goal

Learn y ^ u i = f ( u , i ∣ Θ ) \hat{y}_{ui}=f(u,i|\Theta) y^ui=f(u,iΘ)
y ^ u i \hat{y}_{ui}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值