Neural Collaborative Filtering
WWW-Xiangnan He, Lizi Liao,Hanwang Zhang,Liqiang Nie,Xia Hu, Tat-Seng Chua-2017
思路
- 基于神经网络技术以解决推荐中的关键问题:基于隐式反馈的协同过滤;
- 最初的神经网络应用在对辅助信息的建模中,对CF的关键因素即用户与项目的交互进行建模时仍然采用矩阵分解,并对用户和项目的潜在特征应用内积;
- 通过将内积替换为可以从数据中学习任意函数的神经架构,提出NCF,即基于神经网络的协同过滤;
- NCF是通用的,可以在此框架下表示和推广矩阵分解。为增强NCF的非线性建模,使用MLP来学习用户-项目的交互函数。
准备工作
一、从隐式数据中学习:
这里要注意的是,1并不意味着u喜欢i,0也不意味着u不喜欢i,可能只是没看到这个i;所以这样的定义缺乏负面反馈。
预测Y中交互的函数如上定义,⚪表示模型参数,f就是交互函数。
估计⚪参数时,通常遵循优化目标函数的机器学习范例:一种是逐点损失,一种是成对损失。