NCF框架:Neural Collaborative Filtering

NCF(Neural Collaborative Filtering)是一种使用神经网络改进协同过滤的框架,旨在解决隐式反馈的推荐问题。通过将矩阵分解的内积替换为可学习的神经架构,NCF能更好地捕捉用户-项目的交互。模型包括GMF(广义矩阵分解)和MLP(多层感知机),并在NeuMF中融合两者以结合线性和非线性建模。实验表明,NCF在电影和Pinterest数据集上的表现优于传统推荐算法。
摘要由CSDN通过智能技术生成

Neural Collaborative Filtering

WWW-Xiangnan He, Lizi Liao,Hanwang Zhang,Liqiang Nie,Xia Hu, Tat-Seng Chua-2017

思路

  1. 基于神经网络技术以解决推荐中的关键问题:基于隐式反馈的协同过滤;
  2. 最初的神经网络应用在对辅助信息的建模中,对CF的关键因素即用户与项目的交互进行建模时仍然采用矩阵分解,并对用户和项目的潜在特征应用内积;
  3. 通过将内积替换为可以从数据中学习任意函数的神经架构,提出NCF,即基于神经网络的协同过滤;
  4. NCF是通用的,可以在此框架下表示和推广矩阵分解。为增强NCF的非线性建模,使用MLP来学习用户-项目的交互函数。

准备工作

一、从隐式数据中学习:
在这里插入图片描述
这里要注意的是,1并不意味着u喜欢i,0也不意味着u不喜欢i,可能只是没看到这个i;所以这样的定义缺乏负面反馈。在这里插入图片描述
预测Y中交互的函数如上定义,⚪表示模型参数,f就是交互函数。
估计⚪参数时,通常遵循优化目标函数的机器学习范例:一种是逐点损失,一种是成对损失。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值