本人在使用残差网络进行训练模型时,在GPU上运行程序没有问题,然而在CPU上跑程序时则出现了以下问题
InvalidArgumentError: Conv2DCustomBackpropFilterOp only supports NHWC.
[[node Conv2DBackpropFilter (defined at E:\anaconda\envs\tf2\lib\site-packages\tensorflow_core\python\framework\ops.py:1751) ]] [Op:__inference_distributed_function_2090]
Function call stack:
distributed_function
本人使用的时TF2.0,并且将输入数据形式改为channel_first,但其实TF2.0中默认的是channel_last,且CPU版本中的卷积不支持这种形式,最好不要轻易去改为channel_first,我在笔记本上安装了GPU版本跑完之后最后发现转换为tflite模型时,仍然不支持NHWC的形式,所以一定一定不要轻易改输入数据形式。
解决方案:
将数据从NCHW转换为NHWC的形式,并将tf默认的输入数据形式还原为默认的channel_last
数据转换代码如下:
tf.keras.backend.set_image_data_format('channels_last')
temp_x_train = []
for i in range(len(x_train)):
new_x_train_row=np.moveaxis(x_train[i],0,2)
temp_x_train.append(new_x_train_row)
x_train = np.array(temp_x_train)
20210128更新:
今日使用tf1 + keras的小伙伴找到我,在进行了一些列操作后仍然有问题,最后经历各种复现后通过更新了keras版本解决了问题
使用tf1的同学可以尝试将tf 及keras更换至下述版本
tensorflow == 1.8.0
Keras == 2.1.6
如果还有问题,欢迎联系本人QQ:2495414744.