win10 + 3070/3080/3090的tensorflow-gpu安装

本文详细介绍了如何在配备3070/3080/3090显卡的Windows 10系统中配置TensorFlow2-GPU的步骤,包括更新NVIDIA驱动、安装Anaconda、CUDA11.1及cuDNN,以及设置环境变量和安装tf-nightly-gpu。过程中提供了百度网盘链接加速下载,并给出了可能出现的问题及解决方案。
摘要由CSDN通过智能技术生成

 

3070/3080/3090显卡 + win10 下的tensorflow2-gpu配置

 

前言

近期入手3080,按照之前笔记本的安装方式跑不起来,后来查了后发现之前的驱动不支持新的显卡,还是年轻了。

不讲武德,上才艺,自己平时科研没太多时间,安装CUDA这些不再截图,简单步骤帮大家避避坑。

 

一、步骤

1. NVIDIA驱动更新至最新版

2. 安装Anaconda支持3.7/3.8

3. 安装CUDA11.1

4. cudnn包导入CUDA安装目录

5. 配置环境变量

6. anaconda创建环境安装cudnn

7. 安装tf-nightly-gpu

二、稍微具体步骤

Step 1:NVIDIA驱动更新至最新版

使用驱动大师(或其他驱动软件)将NVIDIA更新至最新版。30系列显卡新出的,很多东西还在完善,更到最新就完事了。

Step 2:安装Anaconda支持3.7/3.8

前往anaconda官网下载win10的64位图形界面,安装好,过程中把添加环境变量勾选上

Step 3:安装CUDA11.1

NVIDIA官网下载CUDA实在是太慢(可以点链接试试),给一个百度网盘的链接,安装好进行下一步

链接:https://pan.baidu.com/s/1yKfgpLyFeGHpGRFPbCKMRw 
提取码:1234 
 

Step 4:cudnn包导入CUDA安装目录

NVIDIA官网(需注册)下载cudnn for 11.1实在是太慢,同样给一个百度网盘的链接,下载后解压,找到CUDA安装目录复制到如下文件夹下(默认路径)

链接:https://pan.baidu.com/s/1T1aUvxvRajgxuEGGwCMm4w 
提取码:1234 

Step 5:配置环境变量

上这里边找

按照下边和NVIDIA相关的少啥补啥

Step 6:anaconda创建环境安装cudnn

1. anaconda创建环境可以用conda命令,可以用anaconda程序的界面创建

2. 激活环境安装cudnn

activate 环境名称
conda install cudatoolkit=11

Step 7:安装tf-nightly-gpu

1. 在上述环境下安装

  pip install tf-nightly-gpu

2. 安装jupyter

pip install jupyter

3. 进入jupyter notebook

jupyter notebook

测试

1. 测试是否有GPU设备

import tensorflow as tf
gpu_device_name = tf.test.gpu_device_name()
print(gpu_device_name)

2. 测试GPU是否可用

tf.test.is_gpu_available()

如果你得到以下结果,大功告成!

如果出现了以下错误,尝试在代码加入以下代码

错误:

InternalError:  Blas xGEMM launch failed : a.shape=[1,200,64], b.shape=[1,64,7], m=200, n=7, k=64
	 [[node model/dense/MatMul (defined at <ipython-input-1-aa8c5aae84a3>:158) ]] [Op:__inference_train_function_1621]

Function call stack:
train_function

插入代码:

import tensorflow as tf
config = tf.compat.v1.ConfigProto(gpu_options=tf.compat.v1.GPUOptions(allow_growth=True))
sess = tf.compat.v1.Session(config=config)

 

评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值