3070/3080/3090显卡 + win10 下的tensorflow2-gpu配置
前言
近期入手3080,按照之前笔记本的安装方式跑不起来,后来查了后发现之前的驱动不支持新的显卡,还是年轻了。
不讲武德,上才艺,自己平时科研没太多时间,安装CUDA这些不再截图,简单步骤帮大家避避坑。
一、步骤
1. NVIDIA驱动更新至最新版
2. 安装Anaconda支持3.7/3.8
3. 安装CUDA11.1
4. cudnn包导入CUDA安装目录
5. 配置环境变量
6. anaconda创建环境安装cudnn
7. 安装tf-nightly-gpu
二、稍微具体步骤
Step 1:NVIDIA驱动更新至最新版
使用驱动大师(或其他驱动软件)将NVIDIA更新至最新版。30系列显卡新出的,很多东西还在完善,更到最新就完事了。
Step 2:安装Anaconda支持3.7/3.8
前往anaconda官网下载win10的64位图形界面,安装好,过程中把添加环境变量勾选上
Step 3:安装CUDA11.1
NVIDIA官网下载CUDA实在是太慢(可以点链接试试),给一个百度网盘的链接,安装好进行下一步
链接:https://pan.baidu.com/s/1yKfgpLyFeGHpGRFPbCKMRw
提取码:1234
Step 4:cudnn包导入CUDA安装目录
NVIDIA官网(需注册)下载cudnn for 11.1实在是太慢,同样给一个百度网盘的链接,下载后解压,找到CUDA安装目录复制到如下文件夹下(默认路径)
链接:https://pan.baidu.com/s/1T1aUvxvRajgxuEGGwCMm4w
提取码:1234
Step 5:配置环境变量
上这里边找
按照下边和NVIDIA相关的少啥补啥
Step 6:anaconda创建环境安装cudnn
1. anaconda创建环境可以用conda命令,可以用anaconda程序的界面创建
2. 激活环境安装cudnn
activate 环境名称
conda install cudatoolkit=11
Step 7:安装tf-nightly-gpu
1. 在上述环境下安装
pip install tf-nightly-gpu
2. 安装jupyter
pip install jupyter
3. 进入jupyter notebook
jupyter notebook
测试
1. 测试是否有GPU设备
import tensorflow as tf
gpu_device_name = tf.test.gpu_device_name()
print(gpu_device_name)
2. 测试GPU是否可用
tf.test.is_gpu_available()
如果你得到以下结果,大功告成!
如果出现了以下错误,尝试在代码加入以下代码
错误:
InternalError: Blas xGEMM launch failed : a.shape=[1,200,64], b.shape=[1,64,7], m=200, n=7, k=64
[[node model/dense/MatMul (defined at <ipython-input-1-aa8c5aae84a3>:158) ]] [Op:__inference_train_function_1621]
Function call stack:
train_function
插入代码:
import tensorflow as tf
config = tf.compat.v1.ConfigProto(gpu_options=tf.compat.v1.GPUOptions(allow_growth=True))
sess = tf.compat.v1.Session(config=config)