毕业设计-基于深度学习的古文字识别系统

目录

前言

课题背景和意义

实现技术思路

一、相关理论与技术  

 二、数据集介绍 

三、基于多尺度特征融合的异体字识别网络

实现效果图样例

最后


前言


    📅大四是整个大学期间最忙碌的时光,一边要忙着备考或实习为毕业后面临的就业升学做准备,一边要为毕业设计耗费大量精力。近几年各个学校要求的毕设项目越来越难,有不少课题是研究生级别难度的,对本科同学来说是充满挑战。为帮助大家顺利通过和节省时间与精力投入到更重要的就业和考试中去,学长分享优质的选题经验和毕设项目与技术思路。

🚀对毕设有任何疑问都可以问学长哦!

选题指导: https://blog.csdn.net/qq_37340229/article/details/128243277

大家好,这里是海浪学长毕设专题,本次分享的课题是

🎯毕业设计-基于深度学习的古文字识别系统

课题背景和意义

古文字作为记录古代历史、经济、文化、科学技术发展的瑰宝具有无穷无尽的 研究价值。在中国古代,古文字由于其不同的使用民族被分为以甲骨文为代表的古 汉字和以古彝文等为代表的少数民族古文字,它们一起组成了中国古文字的百花 园。中国古代早期的文字是典型的表形文字或者称象形文字,属于人类文字发展 最初阶段,其通过描述客观事物的外部形象来书写记录事件,其中的代表就是甲骨 文和古彝文。随着历史经济文化的发展,中国古文字也进行了相应演变,字形逐步 脱离事物的具体形象。从商周时期的甲骨文和金文,随后到春秋战国与秦朝的篆 文,再至汉朝产生隶书、草书、行书以及楷书,最后到唐代形成正楷,也就是常用 的现代汉字。古文字作为人类用文字符号来记录历 史的方式与工具,其从古至今对文明历史的传承和知识文化的传播发挥着不可替 代的作用并且对未来的影响将会与日俱增。古文字承载着古代各族人民的劳动与智慧,记载了历朝历代的兴 衰与荣辱,也为后人探索当时的历史风貌,继承和发扬优秀的精神文明提供了宝贵 的参考。  

实现技术思路

一、相关理论与技术  

深度学习  

神经网络是由多个神经处理层或神经处理模块构成来学习获取多个抽象层次 的数据表示的计算数据模型,通过反向传播算法来调整优化内部参数,这些参数用 于进一步计算每一层的表示。因此利用这种具有优秀的特征提取能力的深度学习 方法为古文字识别提供了强有力的技术支持。

 深度学习中有许多神经节点,而不是只有一个节点。这些神经节点也被称为 神经网络,单个节点被称为一个神经元。在深度学习中,输入和输出之间有很多 层。一个层可以有几百个甚至几千个神经元。在输入和输出之间的层被称为隐藏 层,而这些节点被称为隐藏节点。图展示了含有一个隐藏层的单层神经 网络,

图中展示了含有多个隐藏层的多层神经网络。

卷积神经网络  

在DL领域,卷积神经网络(CNN)是最著名和常用的算法。与之前的算法 相比,CNN的主要好处是它能自动识别相关的特征,而不需要任何人工监督。 CNN已经被广泛地应用于一系列不同的领域,包括计算机视觉、语音处理、面部识别等。CNN的结构受到人类和动物大脑中神经元的启发,即由复杂的细 胞序列构成了视觉皮层,这个序列被CNN模拟出来。

1、CNN结构  

1()卷积层

 在CNN架构中,卷积层是其中的核心组成。它包含了大量卷积核,其将输入 图像或图像特征与卷积核进行卷积,以生成输出特征图。

 为了更好理解卷积操作,让我们以3×3的灰度图像为例,用一个2×2的随机 权重初始化的卷积核。首先,卷积核在整个图像上进行水平和垂直滑动,它们的对 应值相乘然后相加最后形成一个单一的标量值。然后重复整个过程,直到不可能进 一步滑动。

(2)池化层  

池化层的主要任务是采样特征图并且缩小其尺寸。最熟悉和经常利用的池化 方法是最大、最小和全局平均池(GAP)池化。

(3)激活函数  

将输入映射到输出的激活函数是神经网络的核心,其通过创建相应的输出来 决定是否根据特定输入触发神经元。激活层通常是具有非线性的,这使得CNN具 有学习额外复杂事物的能力。

(4)全连接层  

通常在卷积层和池化层之后,全连接层是神经网络中进行高级推理的重要结 构。通常情况下,全连接层主要位于CNN架构的末端。全连接层中的神经元与后 层的所有神经元有完全的连接,其最终将二维特征激活图转变为一维特征向量。 

(5)损失函数  

我们上面已经介绍了CNN架构的各种层。此外,最终的分类是由输出层实现 的,它代表了CNN架构的最后一层。在输出层中利用一些损失函数来计算CNN 模型中训练样本的预测误差。这个误差显示了实际输出和预测输出之间的差异。

CNN优化

 对于CNN模型,拟合代表了与获得良好的泛化相关的核心问题。模型在训练 数据上获得较好的结果而在测试数据上不成功的情况下,该模型被称为过拟合。拟 合不足的模型则相反,这种情况发生在模型没有从训练数据中学习到足够的内容, 称为欠拟合。

如果模型在训练和测试数据上都执行得很好,则被称为平衡状态。这 三种类型在图中有所说明。

常用模型与结构

1、孪生网络结构  

在目前深度学习时代,神经网络几乎擅长每一项任务,但这些神经网络依靠更 多的数据才能表现良好。但是对于某些问题,如人脸识别和签名验证,我们不能总 是依靠获得更多的数据,为了解决这种任务,我们有一种新型的神经网络架构,称 为孪生网络。

因此,孪生网络非常适用于数据量不足的古文字识别领域,它只使 用少数数量的图像来获得更好的预测,从很少的数据中学习的能力使孪生网络在 最近几年更受欢迎,这也是我们通用模型的关键网络结构。如图:

2、多尺度融合网络  

在古文字识别领域,这种通过多尺度特征而获取图像不变特征的能力对于那 些变异较大的异体古文字识别具有重要意义。另外,感受野和池化操作控制着图像 特征的尺度,这是获取图像不变特征的关键要素。因此,主要介绍两个控制尺 度特征信息和特征融合的经典卷积神经网络,即GoogLeNet和ResNet.

(1)GoogLeNet with Inception 
我们知道提高卷积神经网络性能的最直观的方法是堆叠更多的层,并在层中添加更多的参数.

(2)ResNet

 原则上,具有深层结构的CNN比浅层的CNN表现更好,更深的网络有更好 的能力来代表输入的高层次特征,因此提高了预测的准确性。然而不能简单地 堆叠越来越多的层,因为会出现严重的退化问题。

 二、数据集介绍 

数据预处理  

为了本研究的方便和获取最佳的实验效果,我们将所有数据集古文字实例进 行了一系列标准化预处理,其目的是通过减少源图像中的干扰信息来增强重要信 息的可检测性,并且尽可能地简化图像从而提高特征提取和识别的可靠性。

实际上, 如图所示为图像识别一般流程,大多数识别等相关任务之前进行相应的图像预 处理是非常有增益的,然而也有研究表明卷积神经网络在内部进行了类似预处理 的步骤,过度的预处理可能会带来相反的效果。

 我们使用了python的PIL库进行一系列图像预处理,包括灰度化、二值化、 图片反转、尺度标准化、边界填充。如图为本文的文字图像预处理流程。

数据增强  

目前最先进的神经网络模型都是需要成千上万的图片数据输入,其经过大量 数据的训练之后,往往获得较好的效果。然而在很多诸如古文字领域的数据量是不 足的,因此针对于小样本数据训练,必须要有一定的数据增强方式来提高模型识别 精度。

三、基于多尺度特征融合的异体字识别网络

多尺度特征融合识别总体框架

在之前的古文字研究中,古文字中的异体字识别一直是难点。而且在各种古文 字数据集中,异体字的数量有很大比例。因此,对于古文字识别研究中异体字字符 识别是非常有必要和关键的。大量采用传统的方法手工设计特征的方法,这种方法 不仅耗时而且需要掌握相应的领域知识,对于不同古文字的适应能力较差。

如图所示,本文的古文字的异体字多尺度特征融合框架主要由古文字批量 预处理模块和HCMFFNet网络模块(包括多尺度特征融合模块以及特征嵌入融合 模块)组成。

网络结构介绍 
在之前的古文字识别研究中,很少有专门针对古文字中的异体字的研究,更没有为异体字识别而设计的特征抽取网络。大多数研究都是对古文字进行直接识别,我们发现异体字在古文字中普遍存在,这和古文字的演变也有很大的关联,解决异体字识别也是古文字识别精确率提高的关键。

1、多尺度特征融合模块  

多尺度特征融合模块是本文提出的针对异体字的关键特征抽取网络的主要卷 积部分,其中包含了不同感受野提取的多种尺度特征,是异体字的局部尺度特征提 取的关键。图简单的展示了多尺度特征融合模块。

 底层卷积特征枝干是提取古文字图像底层特征的关键,如图所示。首先经 过3个的卷积层提取出基本的图像底层特征,然后使用1个通道特征融合结 构处理,即2个同样感受野的最大池化层和卷积层的通道特征融合,最后得 到丰富的多通道图像底层特征。

2、特征嵌入融合模块

嵌入结构指的是可以将某一图像的特征图编码为嵌入向量的特殊结构,在这 个嵌入向量空间可以计算距离度量获取目标对象之间的相关性关系。我们观察到 传统的嵌入结构仅使用全连接层(FCL)将特征图向量化,然而该结构由于需要优化 大量参数常常造成训练严重过拟合,因而导致此网络的泛化性能极差。

受残差网络中的残差学习思想的启发,打算利用残差结构将FCL,GAP和 Dropout中联系起来作为我们的嵌入结构,因此我们提出了4种嵌入结构GF、 GFD_IN、GDF_IN和GFD_OUT,具体结构如图所示

不同于残差网络中对原 特征图的残差学习,我们的结构在经过全局平均池化后获得的矢量上增加更加丰 富的经过全连接层学习到的图像特征,具体使用公式如下:

实现效果图样例

古文字识别系统:

我是海浪学长,创作不易,欢迎点赞、关注、收藏、留言。

毕设帮助,疑难解答,欢迎打扰!

最后

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值