毕业设计:基于卷积神经网络的车道线检测系统 深度学习 CNN

目录

前言

课题背景和意义

实现技术思路

一、算法理论基础

1.1 卷积神经网络

1.2 多尺度特征融合

二、 数据集

2.1 数据集

2.2 数据扩充

三、实验及结果分析

3.1 实验环境搭建

3.2 模型训练

最后


前言

    📅大四是整个大学期间最忙碌的时光,一边要忙着备考或实习为毕业后面临的就业升学做准备,一边要为毕业设计耗费大量精力。近几年各个学校要求的毕设项目越来越难,有不少课题是研究生级别难度的,对本科同学来说是充满挑战。为帮助大家顺利通过和节省时间与精力投入到更重要的就业和考试中去,学长分享优质的选题经验和毕设项目与技术思路。

🚀对毕设有任何疑问都可以问学长哦!

    选题指导:

        最新最全计算机专业毕设选题精选推荐汇总

        大家好,这里是海浪学长毕设专题,本次分享的课题是

       🎯基于卷积神经网络的车道线检测系统

课题背景和意义

       随着智能驾驶技术的不断发展,车道线检测系统在自动驾驶和辅助驾驶领域扮演着重要的角色。车道线检测系统能够准确地识别道路上的车道线,并提供关键的位置信息,为自动驾驶系统做出决策和规划提供支持。然而,传统的基于规则和传统计算机视觉方法的车道线检测存在鲁棒性差、适应性差等问题。

实现技术思路

一、算法理论基础

1.1 卷积神经网络

       卷积神经网络(CNN)是一种前馈神经网络,主要由卷积层、激活层、池化层和全连接层按照一定顺序的组合构成。卷积层通过应用卷积操作来提取输入数据的特征,激活层引入非线性变换,增加网络的表达能力,池化层用于减小特征图的尺寸并保留重要的特征,全连接层将汇总的特征映射转换为最终的输出结果。这种层次结构的组合能够有效地学习和提取图像等数据中的特征,使得CNN在图像处理、计算机视觉和模式识别等领域取得了显著的成果。通过对CNN的层次结构和组合方式的优化与改进,可以进一步提升其在车道线检测等任务中的性能和鲁棒性,为自动驾驶系统的发展带来更多的机遇和挑战。

毕业设计:基于卷积神经网络的车道线检测系统 深度学习 CNN

​       神经网络的计算对于大量的神经元连接而言确实带来了巨大的困难,但卷积层的提出在一定程度上解决了这个问题。卷积层由滤波器组成,其中每个滤波器有三个维度:长度、宽度和通道数。这些维度可以根据实际需求自由设定,并且随着卷积层数的增加,长度和宽度通常会增加。

       在卷积计算中,卷积核按照预先设置的步长在输入数据的长度和宽度方向上滑动,并计算输入数据与卷积核的内积。卷积神经网络在图像处理领域中具有独特的优势,能够更好地理解和利用图像的空间信息,提高模型的表征能力和准确性。

       相对于传统的反向传播(BP)神经网络,卷积神经网络具有以下几点优势:首先,卷积核具有权值共享的特点,可以有效减少神经网络的参数量,从而降低模型的复杂度;其次,卷积核保留了图像的空间信息,能够提取更多有效特征,进一步提高模型的表征能力;最后,通过堆叠多个卷积层,可以进一步提升模型的表征能力,学习到更复杂的特征表示。

毕业设计:基于卷积神经网络的车道线检测系统 深度学习 CNN

​       激活函数在神经网络中起着关键的作用,它通过引入非线性操作,将上一层神经元的输出转化为下一层神经元的输入,从而增强神经网络的表达能力。在图像处理中,激活函数使用特定的阈值来设定二值化标准,对像素点信息进行处理,进一步简化图像信息。激活函数的引入使得神经网络能够处理非线性和复杂问题,而如果没有激活函数,神经网络将退化为多层感知机无法应对这些问题。因此,激活函数对于神经网络的性能至关重要,它能够增强神经网络的表达能力,并几乎可以逼近任意函数。

​        池化层在卷积神经网络中的作用非常重要。它通常位于卷积层之后,用于减小特征图的尺寸和参数量,以及保留主要特征、过滤无关信息和去除噪声。如果没有池化层,直接将卷积层连接到最后的分类器,全连接层的参数量会激增,导致模型无法准确判断输入数据,不利于拟合。通过池化层,可以降低计算资源的消耗,实现特征的不变性和位置不变性。最大池化是最常见的池化方式,它在每个池化窗口内选择最大值作为特征图的输出,实现特征的保留和下采样。另一种常见的池化方式是平均池化,它通过取相邻区域内像素的平均值来减小特征图的尺寸。池化层在神经网络中不仅能够降低特征图的尺寸和参数量,还可以防止过拟合。缩小后的特征图使得模型更加高效,并有利于提取图像特征,进一步降低模型的复杂性。

毕业设计:基于卷积神经网络的车道线检测系统 深度学习 CNN

1.2 多尺度特征融合

       多尺度特征融合在车道线检测系统中的应用可以提高对不同尺度车道线的检测能力,增强系统的鲁棒性,并适应复杂的道路环境。它通过提取和融合不同尺度的特征信息,提高检测准确性,减少误检和漏检的情况。这种方法具有强鲁棒性,能够适应不同曲率、宽度和遮挡程度的车道线,并能应对光照变化等复杂场景。通过多尺度特征融合,车道线检测系统可以更准确地检测和识别车道线,提高驾驶辅助系统的性能和可靠性。

毕业设计:基于卷积神经网络的车道线检测系统 深度学习 CNN

​在车道线检测系统中,多尺度特征融合的流程一般包括以下步骤:

  1. 特征提取:使用适当的方法提取图像中的特征,常用的方法包括卷积神经网络、边缘检测算法等。这些方法能够从图像中提取出具有代表性的特征信息。

  2. 尺度变换:对提取的特征进行尺度变换操作,包括上采样和下采样。上采样可以将低分辨率的特征图放大到高分辨率,而下采样则可以将高分辨率的特征图缩小到低分辨率。这样可以得到不同尺度的特征图。

  3. 特征融合:将不同尺度的特征图进行融合,常用的方法包括特征拼接和加权平均。特征拼接将不同尺度的特征图在通道维度上进行拼接,形成一个更加综合的特征表示。加权平均则对不同尺度的特征图进行加权求和,以得到融合后的特征图。

  4. 车道线检测:使用融合后的多尺度特征图进行车道线检测。这可以通过应用机器学习算法,如支持向量机、随机森林或深度学习方法,进行车道线的分类和分割。

  5. 后处理:对检测结果进行后处理,以提高检测的准确性和稳定性。后处理操作可以包括去除噪声、车道线段的连接和平滑等,以得到最终的车道线检测结果。

       在车道线检测系统中,特征提取模块采用了残差网络(ResNet)作为主干网络。使用ResNet的主要优点包括解决梯度消失问题、提高模型的表达能力和减少参数数量。具体地,采用了ResNet-18结构作为示例,它由多个堆叠的卷积层和池化层组成。特征提取部分包括Input stem和多个由残差块连接而成的模块(Stage 1、2、3、4),用于提取图像的不同层级特征。这些模块通过跳跃连接的卷积单元设计,使得网络更易于训练,同时有助于特征的提取和信息传递。随着层数的增加,输出特征的尺寸逐渐减小,通道数逐渐增加,表示网络提取到了更深层次、更抽象的特征。ResNet-18结构相对简单,每个模块包含两个残差块。通过这样的特征提取设计,可以提高车道线检测算法的准确性和效率。 

毕业设计:基于卷积神经网络的车道线检测系统 深度学习 CNN

​        在车道线检测系统中的多尺度信息融合模块,采用了自顶向下和自底向上两个模块对不同尺度的特征进行融合。该模块的主要目的是聚合不同分辨率下的特征,增强整个特征层次的信息,并缩短最下层与最上层特征之间的信息传递路径。这样做可以增强对低层次信息的响应,提高网络的性能。通过自顶向下和自底向上的融合操作,多尺度信息融合模块可以将不同尺度的特征进行有效的整合,以提升车道线检测系统的性能和准确性。

毕业设计:基于卷积神经网络的车道线检测系统 深度学习 CNN

​       经过多尺度信息融合后,高层特征N4被输入到多层感知机中,完成最终的车道线分类定位。高层特征在经过多次下采样后具有更高的语义信息,能够更好地表示图像的全局信息,如物体的形状、位置和大小。同时,随着深度增加,特征的空间分辨率逐渐降低,因此低层次特征更适合表示局部细节信息,而高层次特征更适合表示全局语义信息。因此,在分类任务中通常只使用最高层特征,以提高分类性能,并减少计算量和内存占用,使网络更轻量化和高效。

python
复制
import torch
import torch.nn as nn
import torch.nn.functional as F

class LaneDetectionNet(nn.Module):
    def __init__(self):
        super(LaneDetectionNet, self).__init__()
        # 定义卷积层、池化层等网络组件
        self.conv1 = nn.Conv2d(3, 16, kernel_size=3, stride=1, padding=1)
        self.conv2 = nn.Conv2d(16, 32, kernel_size=3, stride=1, padding=1)
        self.conv3 = nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1)
        self.conv4 = nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1)
        self.pool = nn.MaxPool2d(kernel_size=2, stride=2)
        self.fc1 = nn.Linear(128 * 7 * 7, 256)
        self.fc2 = nn.Linear(256, 2)  # 2表示车道线的类别数量,可以根据实际情况进行调整

    def forward(self, x):
        # 输入图像经过卷积和池化层进行特征提取
        x = self.pool(F.relu(self.conv1(x)))
        x = self.pool(F.relu(self.conv2(x)))
        x = self.pool(F.relu(self.conv3(x)))
        x = self.pool(F.relu(self.conv4(x)))

        # 多尺度信息融合
        x = torch.mean(x, dim=(2, 3))  # 对高层特征的空间维度求平均,获得每个通道的平均特征
        x = x.view(x.size(0), -1)  # 将特征展平为一维向量

        # 输入到多层感知机中进行分类和定位
        x = F.relu(self.fc1(x))
        x = self.fc2(x)

        return x

       辅助分割在车道线定位系统中的主要作用是在训练阶段增强视觉特征,以更好地利用信息来辅助车道线定位。该部分接收多尺度信息融合模块输出的不同尺度特征,并对其进行上采样和拼接操作,然后通过卷积操作生成分割掩膜图。分割掩膜图可以用来监督训练并更新模型参数,以增强视觉特征的表征能力。辅助分割部分只在训练阶段有效,不会影响模型的推理速度,在测试推理阶段不使用。

       为了优化辅助分割部分,采用焦点损失函数对模型参数进行优化。焦点损失函数在解决不平衡数据集分割问题上表现良好。传统的损失函数中,各类别的权重相同,容易导致模型在处理类别不平衡时的性能下降。焦点损失函数通过引入一个可调参数,改变易分类样本的权重,降低易分类样本权重,增加困难样本权重。这样可以使模型更关注困难样本的分割,提高少数类别的分割精度。通过优化模型参数,焦点损失函数帮助模型更好地处理类别不平衡问题,并增强辅助分割部分的视觉特征。

二、 数据集

2.1 数据集

       由于网络上没有现有的合适的数据集,我决定自己进行网络爬取,收集了大量的道路场景图片,并制作了一个全新的数据集。这个数据集包含了各种道路类型、天气条件和交通场景下的车道线图像,其中包括直线、曲线、虚线等不同类型的车道线。通过网络爬取,我能够获取真实的道路场景和多样的车道线形式,为我的研究提供了更准确、多样的数据。我相信这个自制的数据集将为车道线检测系统的研究提供有力的支持,并为该领域的发展做出积极贡献。

import requests
import os

# 设置保存图片的文件夹路径
save_dir = 'road_dataset'
if not os.path.exists(save_dir):
    os.makedirs(save_dir)

# 设置搜索关键词和爬取图片数量
search_keywords = ['road', 'street']  # 搜索关键词列表
num_images_per_keyword = 100  # 每个关键词爬取的图片数量

# 网络爬取图片
for keyword in search_keywords:
    search_url = f'https://www.example.com/search?q={keyword}&num={num_images_per_keyword}'
    response = requests.get(search_url)
    search_results = response.json()  # 假设搜索结果以JSON格式返回,并包含图片URL信息

    # 保存图片
    for i, result in enumerate(search_results):
        image_url = result['image_url']
        image_name = f'{keyword}_{i}.jpg'
        image_path = os.path.join(save_dir, image_name)

        # 下载图片并保存到指定路径
        image_data = requests.get(image_url).content
        with open(image_path, 'wb') as f:
            f.write(image_data)

print('数据集制作完成!')

2.2 数据扩充

       为了增加数据的多样性和丰富性,我对自制的数据集进行了数据扩充。采用了图像处理技术,包括旋转、平移、缩放、仿射变换等操作,生成了更多变化的图像样本。同时,还通过添加噪声、模糊、光照变化等方式模拟真实道路环境中的各种干扰和噪声。这样做的目的是提高模型的鲁棒性和泛化能力,使其能够更好地应对各种复杂的道路条件和环境变化。数据扩充的结果表明,经过增强的数据集能够提升车道线检测系统的性能,并提高其在实际应用中的稳定性和可靠性。

三、实验及结果分析

3.1 实验环境搭建

3.2 模型训练

车道线检测系统的设计思路如下:

  •  数据收集和预处理:首先,需要收集大量的道路场景图像数据作为训练集。这些数据应该包含各种道路类型、天气条件和交通场景下的车道线图像,以确保系统在各种情况下都能具有良好的检测性能。收集到的数据需要进行预处理,包括图像增强、尺寸统一、噪声去除等操作,以提高数据的质量和可用性。
  • 网络架构设计:在车道线检测系统中,卷积神经网络(CNN)是核心组件。设计一个合适的网络架构对于准确地检测车道线非常重要。可以采用一种经典的CNN架构,如卷积层、池化层和全连接层的组合,或使用更先进的架构,如残差网络(ResNet)或注意力机制(Attention Mechanism)来提高网络的性能。
  • 特征提取和表示学习:通过卷积和池化等操作,网络能够从图像中提取具有代表性的特征。在车道线检测任务中,可以使用多层卷积层来提取图像中的低级特征和高级语义特征。此外,还可以引入注意力机制来增强网络对车道线区域的关注,提高检测准确性。
  • 训练和优化:使用收集到的数据集对设计好的网络进行训练。训练过程中,可以使用交叉熵损失函数作为监督信号,通过反向传播算法优化网络参数。为了提高训练效果,可以采用批量归一化、正则化等技术来防止过拟合,并使用优化算法如随机梯度下降(SGD)或自适应优化算法(如Adam)来加速训练过程。
  • 预测和后处理:在训练完成后,可以使用训练好的车道线检测网络对新的道路图像进行预测。预测结果将给出车道线的位置和形状信息。为了提高预测结果的稳定性和准确性,可以应用后处理技术,如滤波、曲线拟合等。这些技术可以平滑车道线的位置并去除异常噪声,使检测结果更加鲁棒和准确。 

海浪学长项目示例:

最后

我是海浪学长,创作不易,欢迎点赞、关注、收藏。

毕设帮助,疑难解答,欢迎打扰!

  • 29
    点赞
  • 29
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值