Pytorch/Numpy之squeeze

目录

对于Pytorch而言

对于Numpy而言

代码

输出


对于Pytorch而言

squeeze(torch.tensor,axis)  返回值与原tensor共享内存,修改返回值中元素值对原tensor也有影响

  • 未指定axis,将张量size()中所有为1的维度去除
  • 指定axis,如果该axis为1则去除,反之保留原来的size不变

对于Numpy而言

squeeze(np.ndarray,axis)  返回值与原ndarray共享内存,修改返回值中元素值对原ndarray也有影响

  • 未指定axis,将ndarray shape中所有为1的维度去除
  • 指定axis,如果该axis为1则去除,反之则报错

 

代码

t = torch.rand(1,2,1,3)
print(t.size(),'\n')

t1 = torch.squeeze(t)
print(t1.size(),'\n')

t2 = torch.squeeze(t,0)
print(t2.size(),'\n')

t3 = torch.squeeze(t,1)
print(t3.size(),'\n')
n = np.zeros((1,2,1,3))
print(n.shape,'\n')

n1 = np.squeeze(n)
print(n1.shape,'\n')

n2 = np.squeeze(n,0)
print(n2.shape,'\n')

n3 = np.squeeze(n,1)
print(n3.shape,'\n')

 

输出

torch.Size([1, 2, 1, 3]) 

torch.Size([2, 3]) 

torch.Size([2, 1, 3]) 

torch.Size([1, 2, 1, 3]) 

 

(1, 2, 1, 3) 

(2, 3) 

(2, 1, 3) 

    return squeeze(axis=axis)
ValueError: cannot select an axis to squeeze out which has size not equal to one

 

### PyTorch 线性回归实现教程 以下是基于提供的引用内容和专业知识整理的关于如何在 PyTorch 中实现线性回归的具体方法。 #### 1. 数据准备 为了训练一个线性回归模型,首先需要准备好数据集。通常情况下,我们会创建一些合成的数据来进行实验。这些数据可以通过随机数生成器模拟出来,并加入一定的噪声以更接近真实场景中的情况[^3]。 ```python import torch from torch import nn # 设置种子以便于重现结果 torch.manual_seed(42) # 定义真实的权重和偏置 true_w = torch.tensor([2., -3.4]) true_b = 4.2 # 随机生成样本特征 X 和标签 y num_samples = 1000 features = torch.randn(num_samples, len(true_w)) labels = torch.matmul(features, true_w) + true_b noise = torch.normal(mean=0, std=1, size=labels.shape) labels += noise ``` #### 2. 构建模型 在线性回归中,我们定义了一个简单的模型 \(y = wx + b\) ,其中 \(w\) 表示权重向量,\(b\) 表示偏差项。通过 `nn.Linear` 可以快速构建这样的模型结构[^1]。 ```python class LinearRegressionModel(nn.Module): def __init__(self, input_dim): super().__init__() self.linear_layer = nn.Linear(input_dim, 1) # 输入维度到单输出 def forward(self, x): return self.linear_layer(x) model = LinearRegressionModel(len(true_w)) # 初始化模型实例 print(model.state_dict()) # 查看初始化后的参数 ``` #### 3. 设定损失函数与优化器 对于线性回归问题,常用的损失函数是均方误差 (MSE),而梯度下降法则是更新参数的主要方式之一。PyTorch 提供了丰富的内置功能支持这两部分的操作[^4]。 ```python criterion = nn.MSELoss() # 使用 MSE Loss optimizer = torch.optim.SGD(model.parameters(), lr=0.03) # 学习率设为 0.03 的 SGD Optimizer ``` #### 4. 训练过程 接下来就是迭代整个训练流程,在每一轮次里完成前向传播、计算损失值以及反向传播三个主要步骤。随着轮次数增加,应该能看到损失逐渐减小的趋势[^5]。 ```python batch_size = 10 dataset = torch.utils.data.TensorDataset(features, labels) data_iter = torch.utils.data.DataLoader(dataset, batch_size=batch_size, shuffle=True) epochs = 10 for epoch in range(epochs): for X, y in data_iter: output = model(X).squeeze() loss = criterion(output, y) optimizer.zero_grad() loss.backward() optimizer.step() with torch.no_grad(): train_loss = criterion(model(features).squeeze(), labels) print(f'epoch {epoch+1}, loss {train_loss.item():f}') ``` #### 5. 参数评估 最后可以对比最终得到的模型参数同最初设定的真实值之间的差异程度,以此验证算法的有效性和准确性。 ```python predicted_weights = list(model.parameters())[0].detach().numpy().flatten() predicted_bias = list(model.parameters())[1].item() print('True weights:', true_w.numpy()) print('Predicted weights:', predicted_weights) print('True bias:', true_b) print('Predicted bias:', predicted_bias) ``` --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值