插入排序
插入排序的工作方式像许多人排序一手扑克牌。开始时,我们的左手为空并且桌子上的牌面向下。然后我们每次从桌子上拿走一张牌并将它插入左手中正确的位置。
为了找到一张牌的正确位置,我们从右到左将它与已在手中的每张牌进行比较。拿在左手上的牌总是排序好的,原来这些牌是桌子上牌堆中顶部的牌。
对于插入排序,将其伪代码过程命名为 INSERTION-SORT,其中的参数是一个数组A[1…n],包含长度为n的要排序的一个序列。
该算法原址排序输入的数:算法在数组A中重排这些数,在任何时候,最多只有其中的常数个数字存储在数组外面。在过程INSERTION-SORT结束时,输入数组A包含排序好的输出序列。
# INSERTION-SORT
for j=2 to A.length # 从第二个数开始进行遍历
key = A[j] # 检查A[j]是否应该插入到A[1..j-1]序列中
i = j-1 # 将j与其前j-1个数进行比较
while i>0 and A[i] > key # 如果A[i..j-1]中存在数大于A[j]对应的key值
A[i+1] = A[i] # 将A[i]的值赋给A[i+1],这时候A[i]==A[i+1]
i = i-1 # 比较下一个数
A[i+1] = key # 将不符合上面循环的值变为key所对应的值
从伪代码中可以发现,插入排序的最坏运行时间为 θ ( n 2 ) \theta(n^2) θ(n2),最好运行时间为 θ ( n ) \theta(n) θ(n),平均运行时间为 θ ( n 2 ) \theta(n^2) θ(n2),空间复杂度为 θ ( 1 ) \theta(1) θ(1)。
同时,肯定循环条件可以知道,该算法是稳定的。
python代码实现:
def insertion_sort(collection):
for loop_index in range(1, len(collection)):
insertion_index = loop_index
while (
insertion_index > 0
and collection[insertion_index - 1] > collection[insertion_index]
):
collection[insertion_index], collection[insertion_index - 1] = (
collection[insertion_index - 1],
collection[insertion_index],
)
insertion_index -= 1
return collection
if __name__ == "__main__":
"""
if __name__ == '__main__'的意思是:当.py文件被直接运行时,if __name__ == '__main__'之下的代码块将被运行;当.py文件以模块形式被导入时,if __name__ == '__main__'之下的代码块不被运行
"""
user_input = input("输入以逗号分割的数字:\n").strip()
unsorted = [int(item) for item in user_input.split(",")]
print(insertion_sort(unsorted))
c++代码实现:
#include <iostream>
#include<vector>
using namespace std;
void Insert_Sort(vector<int>& arr,int n) # &是引用
{
for(int loop_index=1;loop_index<n;++loop_index)
{
int insertion_index = loop_index;
while(insertion_index > 0 && arr[insertion_index-1]>arr[insertion_index])
{
swap(arr[insertion_index-1],arr[insertion_index]);
insertion_index--;
}
}
}
int main() {
vector<int> arr;
int num;
int n;
while(cin>>num )
{
arr.push_back(num);
n++;
}
Insert_Sort(arr,n);
for (int i = 0; i < arr.size(); i++) {
cout << arr[i] << ",";
}
return 0;
}