Excel表格无论是新建还是另存保存的格式xlsx会自动变成xlsm,到底是怎么回事? 来看看解决方法


问题详情:

表格文档在保存并重启电脑后会自动多出一个宏格式表格文件,格式是xlsm。

保存或者另存新建的xlsx格式的excel文件后缀会自动变成xlsm。

xlsx格式的excel会自动变成启动宏文件。

怎么回事,怎么解决?

以下有两种解决方法:

方法1:


对于office的解决方法

打开文件--选项--信任中心--信任中心设置--倒数第二个文件阻止设置--第二栏EXcel 2007和更高版本的启用宏的工作簿和模板--右边打上两个勾,保存退出,然后重启电脑即可。


 

方法2:


基于方法不能解决考虑到的蠕虫病毒

如果方法1无法解决,那么这种情况都是中蠕虫强力感染性病毒,现在大部分用户都出现这个问题,至于是什么原因导致的尚未明确。

病毒进程【Synaptics.exe】这个东西是最近比较流行且传播性高但容易被弄si的一个玩意。

 

记住了,就是这个东西【Synaptics.exe】【Synaptics.exe】【Synaptics.exe

 

步骤1:进入任务管理器找到【Synaptics.exe】进程,右键-属性,进入进程原路径将其删除。

 

步骤2:打开此电脑,全盘搜索字段【Synaptics】、【synaptics】,显示隐藏文件,搜索出的有关字段全部删除

 

如果无法找到此进程或进程文件删除失败则可在上方下载我提供的查找工具,全局搜索找出来然后杀死它

 

以上步骤操作完之后嘞,就卸载掉你的wps/office ,然后重新安装,重启即可完美解决此问题

 

肯定有很多人也被这个问题困扰了好久,甚至这玩意已经把电脑上的所有关于xlsx格式的excel文件全部转换成xlsm的格式了吧,我就是其中的受害者之一。

下载不明文件的时候先放到虚拟机用哈勃测测再安装,小心驶得万年船


如需更多关于excel的实用工具去关注我的资源喔~小工具:excel工具箱

 

### 聚宽平台上的机器学习多因子策略 #### 使用聚宽平台进行多因子策略开发的优势 聚宽是一个集成了多种金融工具和技术支持的量化交易平台,特别适合用于实施复杂的交易策略,如基于机器学习的多因子选股模型。该平台不仅提供了丰富的历史行情数据接口,还内置了大量的技术指标计算函数和支持Python编程环境,使得开发者可以方便快捷地测试自己的想法。 #### 构建多因子模型的关键要素 为了在聚宽上成功部署一个多因子策略,有几个方面需要注意: - **特征工程**:这是指从原始市场数据中提取有用的信息作为输入给到后续训练过程的过程。通常会涉及到价格变动率、成交量变化趋势等多个维度的数据处理[^1]。 - **选择合适的算法**:根据具体的应用场景挑选最适宜解决问题类型的机器学习算法非常重要。比如,在预测股价走势时可能更适合采用时间序列分析或者深度学习的方法;而在筛选优质个股的时候,则更多依赖于分类器来进行质量评判[^3]。 - **回测机制的设计**:任何一种新的投资理念都需要经过严格的检验才能被采纳进入实盘操作阶段。因此建立一套科学合理的绩效评估体系就显得尤为必要了。这其中包括但不限于夏普比率、最大回撤幅度等风险调整收益衡量标准。 #### 示例代码片段 下面给出一段简单的示例代码,展示了如何利用`sklearn`库中的随机森林分类器配合聚宽API获取的历史数据来创建一个基本版的多因子选股程序: ```python from jqdata import * import pandas as pd from sklearn.ensemble import RandomForestClassifier def initialize(context): set_benchmark('000300.XSHG') # 设置沪深300指数为基准 context.stocks = get_index_stocks('000300.XSHG') def handle_data(context, data): df = finance.run_query(query(finance.STK_FINANCE_INDICATOR).filter( finance.STK_FINANCE_INDICATOR.code.in_(context.stocks)).limit(50)) X = df[['roe', 'eps']] # 特征向量 y = (df['pe'] < 20).astype(int) # 标签 clf = RandomForestClassifier() clf.fit(X, y) predictions = clf.predict_proba(X) top_10 = sorted(zip(predictions[:, 1], context.stocks), reverse=True)[:10] for score, stock in top_10: order_target_percent(stock, 0.1 / len(top_10)) # 平均分配资金买入前十个高分股 ```
评论 13
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

IT·Null

没有人会去使用打赏这个功能。

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值