贝叶斯决策论是概率框架下实施决策的基本方法。对分类任务,贝叶斯决策论考虑如何基于这些概率和误判损失来选择最优的类别标记。
λij:将一个真实标记为cj的样本误分为ci所产生的损失,在样本x上的条件风险为
我们的任务是寻找一个判定准则h,最小化总体风险
即
h为贝叶斯最优分类器,R(h)为贝叶斯风险,1-R(h*)反映了分类器能达到的最好性能。
最小化分类错误率的贝叶斯最优分类器,即对每个样本x,选择使后验概率P(c|x)最大的类别标记。
想要使用贝叶斯准则最小化决策风险,首先要获得后验概率。但是在现实任务中难以直接获得
通常有两种策略:
给定x,直接建模P(c|x)来预测c,这样得到的是判别式模型
先对联合概率分布P(x,c)建模。由此得到后验概率,这样得到的事生成式模型。
P©是类先验概率,P(x|c)是样本x相对于类标记c的类条件概率