矩阵 AB 与 BA 具有相同的非零特征值
可以从两个方面证明该定理,第一种,借助相似矩阵拥有相同特征值的结论进行(要求 A , B A,B A,B 是可逆的);第二种,则从公式 A B x = λ x ABx=\lambda x ABx=λx 着手。
先讲第一种。假设 A , B A,B A,B 是可逆的。我们知道矩阵 A A A 相似于矩阵 P − 1 A P P^{-1}AP P−1AP,其中 P P P 为任意的可逆矩阵。所以也存在任意一个可逆矩阵 M M M 使得 A B AB AB 相似于 M − 1 A B M M^{-1}ABM M−1ABM,当我们令 M = A M=A M=A 时有 M − 1 A B M = B A M^{-1}ABM=BA M−1ABM=BA,即 A B AB AB 相似于 B A BA BA,进而得证 A B AB AB 与 B A BA BA 具有相同的特征值,而且此时的特征值均不为零。
第二种,记
A
,
B
A, B
A,B 分别为
m
×
n
m \times n
m×n 和
n
×
m
n \times m
n×m 的矩阵,这里不要求
A
,
B
A, B
A,B 均是方阵(即不要求
m
=
n
m = n
m=n), 从而
A
,
B
A, B
A,B 也不需要是可逆的 。给定
A
B
AB
AB 的特征值和特征向量
λ
,
x
\lambda,x
λ,x,使得
A
B
x
=
λ
x
ABx=\lambda x
ABx=λx,式子两端左乘一个
B
B
B,得:
B
A
B
x
=
λ
B
x
(1)
BABx = \lambda Bx \tag{1}
BABx=λBx(1)
当
λ
≠
0
\lambda \neq 0
λ=0 时,根据式
(
1
)
(1)
(1),可知
λ
\lambda
λ 也是
B
A
BA
BA 的特征值,这时
B
A
BA
BA 的特征向量是
B
x
Bx
Bx,即
A
B
AB
AB 与
B
A
BA
BA 具有相同的非零特征值
λ
\lambda
λ.
综上,得证矩阵 A B AB AB 与 B A BA BA 具有相同的非零特征值。
参考源
- Lecture 4: Eigenvalues and Eigenvectors(Matrix Methods in Data Analysis, Signal Processing, and Machine Learning)by Prof. Gilbert Strang.
- AB 和 BA 有何關係?