证明:矩阵 AB 与 BA 具有相同的非零特征值

矩阵 AB 与 BA 具有相同的非零特征值

可以从两个方面证明该定理,第一种,借助相似矩阵拥有相同特征值的结论进行(要求 A , B A,B A,B 是可逆的);第二种,则从公式 A B x = λ x ABx=\lambda x ABx=λx 着手。

先讲第一种。假设 A , B A,B A,B 是可逆的。我们知道矩阵 A A A 相似于矩阵 P − 1 A P P^{-1}AP P1AP,其中 P P P 为任意的可逆矩阵。所以也存在任意一个可逆矩阵 M M M 使得 A B AB AB 相似于 M − 1 A B M M^{-1}ABM M1ABM,当我们令 M = A M=A M=A 时有 M − 1 A B M = B A M^{-1}ABM=BA M1ABM=BA,即 A B AB AB 相似于 B A BA BA,进而得证 A B AB AB B A BA BA 具有相同的特征值,而且此时的特征值均不为零。

第二种,记 A , B A, B A,B 分别为 m × n m \times n m×n n × m n \times m n×m 的矩阵,这里不要求 A , B A, B A,B 均是方阵(即不要求 m = n m = n m=n), 从而 A , B A, B A,B 也不需要是可逆的 。给定 A B AB AB 的特征值和特征向量 λ , x \lambda,x λ,x,使得 A B x = λ x ABx=\lambda x ABx=λx,式子两端左乘一个 B B B,得:
B A B x = λ B x (1) BABx = \lambda Bx \tag{1} BABx=λBx(1)
λ ≠ 0 \lambda \neq 0 λ=0 时,根据式 ( 1 ) (1) (1),可知 λ \lambda λ 也是 B A BA BA 的特征值,这时 B A BA BA 的特征向量是 B x Bx Bx,即 A B AB AB B A BA BA 具有相同的非零特征值 λ \lambda λ.

综上,得证矩阵 A B AB AB B A BA BA 具有相同的非零特征值。

参考源

评论 14
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值