证明:矩阵不同特征值对应的特征向量之间线性无关

前言

学习矩阵对角化(diagonalization)时需要了解一个定理:不同特征值对应的特征向量线性无关。我们知道,一个 n 维矩阵是否可以对角化取决于其是否具有 n 个线性无关的特征向量。所以,在上面的定理的基础上可以得出结论:一个具有 n 个相互不同的特征值的 n 维矩阵必可对角化

本文的中心便是要证明该定理——不同特征值对应的特征向量线性无关。

证明

给定一个 n 维矩阵 A ,其具有 n 个不等的特征值,分别为 λ 1 , . . . , λ n \lambda_1,...,\lambda_n λ1,...,λn,而 x 1 , . . . , x 2 x_1,...,x_2 x1,...,x2 为分别对应 n 个不等特征值的特征向量。我们需要证明这些特征向量线性无关。

先假设这些特征向量线性相关,则存在 n 个不全为零的常数( c i c_i ci)使得如下式子成立:
c 1 x 1 + c 2 x 2 + . . . + c n x n = 0 (1) c_1x_1 + c_2x_2 +...+c_nx_n = 0 \tag{1} c1x1+c2x2+...+cnxn=0(1)
用矩阵 A 左乘式 ( 1 ) (1) (1) ,根据 A x i = λ i x i Ax_i = \lambda_i x_i Axi=λixi 得:
c 1 λ 1 x 1 + c 2 λ 2 x 2 + . . . + c n λ n x n = 0 (2) c_1\lambda_1x_1 + c_2\lambda_2x_2 +...+c_n\lambda_nx_n = 0 \tag{2} c1λ1x1+c2λ2x2+...+cnλnxn=0(2)
再用式 ( 2 ) (2) (2) 减去 λ n ∗ ( 1 ) \lambda_n * (1) λn(1) ,得:
c 1 ( λ 1 − λ n ) x 1 + c 2 ( λ 2 − λ n ) x 2 + . . . + c n − 1 ( λ n − 1 − λ n ) x n − 1 = 0 (3) c_1(\lambda_1-\lambda_n)x_1 + c_2(\lambda_2-\lambda_n)x_2 + ... + c_{n-1}(\lambda_{n-1}-\lambda_n)x_{n-1} = 0 \tag{3} c1(λ1λn)x1+c2(λ2λn)x2+...+cn1(λn1λn)xn1=0(3)
接下来,可将 x i x_i xi 前面的系数 c i ( λ i − λ n ) c_i(\lambda_i-\lambda_n) ci(λiλn) 用常数 d i d_i di 代替,则式 ( 3 ) (3) (3) 可写成:
d 1 x 1 + d 2 x 2 + . . . + d n − 1 x n − 1 = 0 (4) d_1x_1 + d_2x_2 +...+d_{n-1}x_{n-1} = 0 \tag{4} d1x1+d2x2+...+dn1xn1=0(4)
( 4 ) (4) (4) 是不是与式 ( 1 ) (1) (1) 形式一样?只是少了一个 x n x_n xn。那么对式 ( 4 ) (4) (4) 也进行类似式 ( 1 ) (1) (1) 的处理,可得:
d 1 ( λ 1 − λ n − 1 ) x 1 + d 2 ( λ 2 − λ n − 1 ) x 2 + . . . + d n − 2 ( λ n − 2 − λ n − 1 ) x n − 2 = 0 (5) d_1(\lambda_1-\lambda_{n-1})x_1 + d_2(\lambda_2-\lambda_{n-1})x_2 + ... + d_{n-2}(\lambda_{n-2}-\lambda_{n-1})x_{n-2} = 0 \tag{5} d1(λ1λn1)x1+d2(λ2λn1)x2+...+dn2(λn2λn1)xn2=0(5)

若是按照前面的步骤(式 ( 1 ) (1) (1) 至式 ( 3 ) (3) (3))重复进行 n − 2 n - 2 n2 次(每次都用一个不同的单个字符代替 x i x_i xi 前面的系数)后,可得:
m 1 ( λ 1 − λ 3 ) x 1 + m 2 ( λ 2 − λ 3 ) x 2 = 0 (6) m_1(\lambda_1-\lambda_3)x_1 + m_2(\lambda_2-\lambda_3)x_2 = 0 \tag{6} m1(λ1λ3)x1+m2(λ2λ3)x2=0(6)

n i n_i ni 代替式 ( 6 ) (6) (6) x i x_i xi 的系数,即令 n 1 = m 1 ( λ 1 − λ 3 ) n_1 = m_1(\lambda_1-\lambda_3) n1=m1(λ1λ3) n 2 = m 2 ( λ 2 − λ 3 ) n_2 = m_2(\lambda_2-\lambda_3) n2=m2(λ2λ3)

再按照前面的步骤(式 ( 1 ) (1) (1) 至式 ( 3 ) (3) (3))进行一次处理,可得 n 1 ( λ 1 − λ 2 ) x 1 = 0 n_1(\lambda_1-\lambda_2)x_1=0 n1(λ1λ2)x1=0 n 1 n_1 n1 为常数),由于特征向量不为零且各特征值都不相等,所以只能是 n 1 = 0 n_1 = 0 n1=0,又因为 n 1 = m 1 ( λ 1 − λ 3 ) n_1 = m_1(\lambda_1-\lambda_3) n1=m1(λ1λ3),所以 m 1 = 0 m_1=0 m1=0,带入到式 ( 6 ) (6) (6) 中可得 m 2 = 0 m_2=0 m2=0,如此往后迭代最终可得:
c i = 0 for i  = 1 , 2 , . . . , n c_i=0 \quad \text{for i } = 1,2,...,n ci=0for i =1,2,...,n
则说明前面的假设(n 个特征向量 λ 1 , . . . , λ n \lambda_1,...,\lambda_n λ1,...,λn 是线性相关)是错误的,故 矩阵不同特征值对应的特征向量线性无关 得证。

参考源

  • 《Linear Algebra and Its Applications》Gilbert Strang 著
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值