证明:对于实对称矩阵,不同特征值对应的特征向量相互正交

前言

不同特征值对应的特征向量相互正交,是实对称矩阵的一个重要属性,而且从这个属性出发可以证明实对称矩阵的另一个属性:实对称矩阵必可相似对角化。对于一个 n 维矩阵,其可相似对角化的充分且必要条件是——具有 n 个线性无关的特征向量。如果一个 n 维矩阵的不同特征值对应的特征向量相互正交,那么这个矩阵不同特征值对应的特征向量之间线性无关,又因为实对称矩阵 A 的 k 重特征值所对应的线性无关的特征向量恰有 k 个,则 n 维实对称矩阵必然具有 n 个线性无关的特征向量,所以,实对称矩阵必可相似对角化。

本文的中心是证明——对于实对称矩阵,不同特征值对应的特征向量相互正交。

证明

给定一个 n 维实对称矩阵 S S S ,用 λ , α \lambda, \alpha λ,α 表示它的两个不等的特征值,用 x , y x, y x,y 分别表示 S S S 对应于 λ , α \lambda, \alpha λ,α 的特征向量,即: S T = S ,   S x = λ x ,   S y = α y   ( α ≠ λ ) S^T=S,\ Sx=\lambda x ,\ Sy=\alpha y \ (\alpha \neq \lambda) ST=S, Sx=λx, Sy=αy (α=λ).

S x = λ x Sx=\lambda x Sx=λx 两边转置,得 x T S T = λ x T x^TS^T=\lambda x^T xTST=λxT,再往两端右乘一个 y y y,并利用 S T = S S^T=S ST=S,得:
x T S y = λ x T y (1) x^TSy = \lambda x^Ty \tag{1} xTSy=λxTy(1)
S y = α y Sy=\alpha y Sy=αy 两端左乘一个 x T x^T xT,得:
x T S y = α x T y (2) x^TSy=\alpha x^Ty \tag{2} xTSy=αxTy(2)
再用 式 ( 1 ) (1) (1) 减去 式 ( 2 ) (2) (2)
0 = ( λ − α ) x T y (3) 0 = (\lambda - \alpha)x^Ty \tag{3} 0=(λα)xTy(3)
已知 λ ≠ α \lambda \neq \alpha λ=α,所以只能是 x T y = 0 x^Ty=0 xTy=0,即特征向量 x x x 与特征向量 y y y 相互正交,故得证:对于实对称矩阵,不同特征值对应的特征向量相互正交。

参考源

  • 83
    点赞
  • 79
    收藏
    觉得还不错? 一键收藏
  • 3
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值