假设A是一个 m × n m\times n m×n的矩阵,记A的转置为 A T A^{T} AT。
首先证明 r ( A A T ) = r ( A T A ) = r ( A ) = r ( A T ) r(AA^{T})= r(A^{T}A)=r(A)=r(A^T) r(AAT)=r(ATA)=r(A)=r(AT).
假设线程方程组为 A x = 0 Ax= 0 Ax=0 和 A T A x = 0 A^{T}Ax=0 ATAx=0。
如果 A x = 0 Ax=0 Ax=0,则
假设A是一个 m × n m\times n m×n的矩阵,记A的转置为 A T A^{T} AT。
首先证明 r ( A A T ) = r ( A T A ) = r ( A ) = r ( A T ) r(AA^{T})= r(A^{T}A)=r(A)=r(A^T) r(AAT)=r(ATA)=r(A)=r(AT).
假设线程方程组为 A x = 0 Ax= 0 Ax=0 和 A T A x = 0 A^{T}Ax=0 ATAx=0。
如果 A x = 0 Ax=0 Ax=0,则