A‘A和AA‘拥有相同的非零特征值的证明

本文通过数学推导证明了矩阵A和其转置A^T拥有相同的非零特征值。首先,通过线性方程组的解空间分析得出r(A)=r(ATA)=r(A^T)=r(A^TA),进而说明A和A^T有相同的秩。然后,利用特征值性质,证明了如果x是ATA属于特征值λ的特征向量,则AAT也具有相同特征值λ,从而得出结论:AAT和ATA有相同的非零特征值,并推广到AB和BA的情况。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

假设A是一个 m × n m\times n m×n的矩阵,记A的转置为 A T A^{T} AT
首先证明 r ( A A T ) = r ( A T A ) = r ( A ) = r ( A T ) r(AA^{T})= r(A^{T}A)=r(A)=r(A^T) r(AAT)=r(ATA)=r(A)=r(AT).

假设线程方程组为 A x = 0 Ax= 0 Ax=0 A T A x = 0 A^{T}Ax=0 ATAx=0
如果 A x = 0 Ax=0 Ax=0,则

评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

zhengjihao

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值