用keras Faster RCNN训练wider face,实现人脸检测

数据集下载

wider face数据集下载链接: http://mmlab.ie.cuhk.edu.hk/projects/WIDERFace/

keras Faster RCNN训练源码

https://github.com/jiaka/faster_rcnn_keras_wider_face.git

将label改为VOC格式

解压下载好的label文件:wider_face_split,找到wider_face_train_bbx_gt.txt文件,打开发现label的形式是

0–Parade/0_Parade_marchingband_1_799.jpg (图片路径)
21 (此图片中的面孔数量)
78 221 7 8 2 0 0 0 0 0 (第一个人脸标注框)
78 238 14 17 2 0 0 0 0 0 (第二个人脸标注框)

标注框:
x1, y1, w, h, blur, expression, illumination, invalid, occlusion, pose(左上点横坐标,左上点纵坐标,框的宽度,框的高度,框的模糊程度,…(其他的查看readme文件))

而VOC2012的数据集格式(非图像分割)如下:

将wider face的label转换为VOC2012格式的代码

from skimage import io
import shutil
import random
import os
import string

headstr = """\
<annotation>
    <folder>VOC2007</folder>
    <filename>%06d.jpg</filename>
    <source>
        <database>My Database</database>
        <annotation>PASCAL VOC2007</annotation>
        <image>flickr</image>
        <flickrid>NULL</flickrid>
    </source>
    <owner>
        <flickrid>NULL</flickrid>
        <name>company</name>
    </owner>
    <size>
        <width>%d</width>
        <height>%d</height>
        <depth>%d</depth>
    </size>
    <segmented>0</segmented>
"""
objstr = """\
    <object>
        <name>%s</name>
        <pose>Unspecified</pose>
        <truncated>0</truncated>
        <difficult>0</difficult>
        <bndbox>
            <xmin>%d</xmin>
            <ymin>%d</ymin>
            <xmax>%d</xmax>
            <ymax>%d</ymax>
        </bndbox>
    </object>
"""

tailstr = '''\
</annotation>
'''

def all_path(filename):
    return os.path.join('widerface', filename)


def writexml(idx, head, bbxes, tail):
    filename = all_path("Annotations/%06d.xml" % (idx))
    f = open(filename, "w")
    f.write(head)
    for bbx in bbxes:
        f.write(objstr % ('face', bbx[0], bbx[1], bbx[0] + bbx[2], bbx[1] + bbx[3]))
    f.write(tail)
    f.close()


def clear_dir():
    if shutil.os.path.exists(all_path('Annotations')):
        shutil.rmtree(all_path('Annotations'))
    if shutil.os.path.exists(all_path('ImageSets')):
        shutil.rmtree(all_path('ImageSets'))
    if shutil.os.path.exists(all_path('JPEGImages')):
        shutil.rmtree(all_path('JPEGImages'))

    shutil.os.mkdir(all_path('Annotations'))
    shutil.os.makedirs(all_path('ImageSets/Main'))
    shutil.os.mkdir(all_path('JPEGImages'))


def excute_datasets(idx, datatype):
    f = open(all_path('ImageSets/Main/' + datatype + '.txt'), 'a')
    f_bbx = open('wider_face_split/wider_face_' + datatype + '_bbx_gt.txt', 'r')

    while True:
        filename = f_bbx.readline().strip('\n')
        print(filename)
        if not filename:
            break
        im = io.imread('widerface/WIDER_' + datatype + '/images/' + filename)
        head = headstr % (idx, im.shape[1], im.shape[0], im.shape[2])
        nums = f_bbx.readline().strip('\n')
        bbxes = []
        for ind in range(int(nums)):
            bbx_info = f_bbx.readline().strip(' \n').split(' ')
            bbx = [int(bbx_info[i]) for i in range(len(bbx_info))]
            if bbx[7] == 0:
                bbxes.append(bbx)
        writexml(idx, head, bbxes, tailstr)
        shutil.copyfile('widerface/WIDER_' + datatype + '/images/' + filename, all_path('JPEGImages/%06d.jpg' % (idx)))
        f.write('%06d\n' % (idx))
        idx += 1
    f.close()
    f_bbx.close()
    return idx

if __name__ == '__main__':
    clear_dir()
    idx = 1
    idx = excute_datasets(idx, 'train')

附处理好的VOC2012格式的wider face数据集下载https://pan.baidu.com/s/1n1NKd0DCWTqhmDrVAMJfCw 提取码:q2dj

训练结果

由于只训练了30轮左右,预测结果还不是很好,挑出比较好的一张在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值